

Environmental Assessment

APPENDIX B

Air Quality Assessment

AIR QUALITY ASSESSMENT MOOLARBEN COAL PROJECT OC OPTIMISATION MODIFICATION

Moolarben Coal Operations Pty Ltd

25 October 2017

Job Number 17010656

Prepared by

Todoroski Air Sciences Pty Ltd

Suite 2B, 14 Glen Street Eastwood, NSW 2122 Phone: (02) 9874 2123

Fax: (02) 9874 2125

Email: info@airsciences.com.au

Air Quality Assessment Moolarben Coal Project OC Optimisation Modification

DOCUMENT CONTROL

Report Version	Date	Prepared by	Reviewed by
DRAFT - 001	06/07/2017	P Henschke	D Kjellberg
DRAFT - 002	21/07/2017	P Henschke	A Todoroski
DRAFT - 003	08/09/2017	P Henschke	
DRAFT - 004	19/09/2017	P Henschke	
FINAL - 001	25/10/2017	P Henschke & A Todoroski	

This report has been prepared in accordance with the scope of works between Todoroski Air Sciences Pty Ltd (TAS) and the client. TAS relies on and presumes accurate the information (or lack thereof) made available to it to conduct the work. If this is not the case, the findings of the report may change. TAS has applied the usual care and diligence of the profession prevailing at the time of preparing this report and commensurate with the information available. No other warranty or guarantee is implied in regard to the content and findings of the report. The report has been prepared exclusively for the use of the client, for the stated purpose and must be read in full. No responsibility is accepted for the use of the report or part thereof in any other context or by any third party.

TABLE OF CONTENTS

1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Previous modifications	1
2	МО	DIFICATION DESCRIPTION	2
	2.1	Open cut production increase and mine sequence	2
	2.2	Pit disturbance limits	2
	2.3	Other optimisations	3
3	PRC	JECT SETTING	4
4	AIR	QUALITY ASSESSMENT CRITERIA	8
	4.1	NSW EPA impact assessment criteria	8
	4.2	NSW Voluntary Land Acquisition and Mitigation Policy	
	4.3	Project approval criteria	9
	4.4	Environmental Protection Licence operating conditions	9
5	EXIS	TING ENVIRONMENT	11
	5.1	Local climate	11
	5.2	Local meteorological conditions	13
	5.3	Local air quality monitoring	16
	5.3.1	TEOM monitoring	17
	5.3.2	HVAS monitoring	19
	5.3.3		
6	DISF	PERSION MODELLING APPROACH	
	6.1	Modelling scenarios	21
	6.2	Emissions estimation	
	6.2.1	Emissions from other mining operations	27
	6.3	Existing air quality monitoring and management	
	6.4	Modelling methodology	
7	DIS	PERSION MODELLING RESULTS	
	7.1	Summary of modelling predictions (incremental Project-only impacts)	
	7.2	Comparison of modelling predictions	
	7.3	Assessment of total (cumulative) 24-hour average $PM_{2.5}$ and PM_{10} concentrations	
	7.3.1	2.5	
	7.3.2	1	
8	POT	ENTIAL COAL DUST EMISSIONS FROM TRAIN WAGONS	
	8.1	Emission estimation	
	8.2	Modelling approach	
	8.3	Modelling predictions	
	8.4	Summary	
9		ST FUME ASSESSMENT	
	9.1	General outline of best practice blast management	
	9.2	Management of potential air quality impacts from blasting	
1(ENHOUSE GAS ASSESSMENT	
	10.1	Greenhouse gas inventory	44

10.2 Summary of greenhouse gas emissions	45
11 SUMMARY AND CONCLUSIONS	46
12 REFERENCES	47
LIST OF APPENDICES	
Appendix A – Sensitive Receptor Locations	
Appendix B – Windrose Plots	
Appendix C – Emissions Calculation	
Appendix D – Modelling Predictions	
Appendix E – Isopleth Diagrams	
Appendix F – Further detail regarding 24-hour PM ₁₀ analysis	

LIST OF TABLES

Table 4-1: NSW EPA air quality impact assessment criteria	8
Table 4-2: Particulate matter mitigation criteria	8
Table 4-3: Particulate matter acquisition criteria	9
Table 4-4: Long term impact assessment criteria for particulate matter	9
Table 4-5: Short term impact assessment criterion for particulate matter	9
Table 4-6: Long term impact assessment criteria for deposited dustdust	9
Table 5-1: Monthly climate statistics summary – Gulgong Post Office	11
Table 5-2: Summary of TEOM PM ₁₀ levels MCO monitoring stations (µg/m³)	
Table 5-3: Summary of annul average HVAS PM ₁₀ levels (µg/m³)	
Table 5-4: Annual average dust deposition (g/m²/month)	
Table 6-1: Estimated emission for the proposed modification (kg of TSP)	
Table 6-2: Estimated emissions from nearby mining operations (kg of TSP)	
Table 7-1: Estimated annual average contribution from other non-modelled dust sources	29
Table 7-2: Summary of modelled predictions for the Moolarben Coal Complex includi	ing the
Modification where predicted impacts exceed assessment criteria	30
Table 7-3: Cumulative 24-hour average PM _{2.5} assessment - maximum number of additional days	s above
24-hour average PM _{2.5} criterion	35
Table 7-4: NSW EPA contemporaneous assessment - maximum number of additional days abo	
hour average PM ₁₀ criterion	36
Table 7-5: NSW EPA contemporaneous assessment - maximum number of additional days abo	
hour average criterion with implementation of predictive/ reactive measures	
Table 10-1: Annual greenhouse gas emissions for the Moolarben Coal Complex – Open Cut Ope	
Table 10-2: Summary of increased annual CO ₂ -e emissions for the Modification	

LIST OF FIGURES

Figure 3-1: Local setting	5
Figure 3-2: Land ownership	6
Figure 3-3 Topography surrounding the Moolarben Coal Complex	7
Figure 5-1: Monthly climate statistics summary – Gulgong Post Office	12
Figure 5-2: MCO weather station locations	13
Figure 5-3: Annual and seasonal windroses for WS1 (2011)	14
Figure 5-4: Annual and seasonal windroses for WS3 (2012)	15
Figure 5-5: Monitoring locations	16
Figure 5-6: TEOM 24-hour average PM ₁₀ concentrations at MCO TEOM monitors	18
Figure 5-7: HVAS 24-hour average PM $_{ m 10}$ concentrations	19
Figure 6-1: Indicative mine plan for 2019	22
Figure 6-2: Indicative mine plan for 2021	23
Figure 6-3: Indicative mine plan for 2026	24
Figure 7-1: Comparison of maximum incremental 24-hour average PM_{10} concentrations fo	r Year 6
(previously assessed – MOD9) and Year 2019 (the Modification) (µg/m³)	31
Figure 7-2: Comparison of cumulative annual average PM_{10} concentrations for Year 6 (p	reviously
assessed – MOD9) and Year 2019 (the Modification) (µg/m³)	31
Figure 7-3: Comparison of maximum incremental 24-hour average PM_{10} concentrations for	Year 11
(previously assessed – MOD9) and Year 2021 (the Modification) (µg/m³)	32
Figure 7-4: Comparison of cumulative annual average PM_{10} concentrations for Year 11 (p	reviously
assessed) and Year 2021 (the Modification) (µg/m³)	32
Figure 7-5: Comparison of maximum incremental 24-hour average PM_{10} concentrations for	Year 16
(previously assessed) and Year 2026 (the Modification) (µg/m³)	33
Figure 7-6: Comparison of cumulative annual average PM_{10} concentrations for Year 16 (p	reviously
assessed) and Year 2026 (the Modification) (µg/m³)	33
Figure 7-7: Locations available for contemporaneous cumulative impact assessment	34
Figure 7-8: Predicted 24-hour average PM $_{ m 10}$ concentrations for sensitive receptor locations 9 a	and 40 in
Year 2019 (unmitigated)	38
Figure 7-9: Predicted 24-hour average PM $_{ m 10}$ concentrations for sensitive receptor locations 9 a	and 40 in
Year 2021 (unmitigated)	39
Figure 7-10: Predicted 24-hour average PM $_{ m 10}$ concentrations for sensitive receptor locations 9 $_{ m 6}$	and 40 in
Year 2026 (unmitigated)	40
Figure 8-1: Maximum predicted 24-hour average TSP concentration based on train wagon e	missions
	42

1 INTRODUCTION

Moolarben Coal Operations Pty Ltd (MCO) is proposing to optimise open cut mining operations at the Moolarben Coal Complex. These optimisations would require MCO to modify Project Approvals for Stage 1 and Stage 2 (herein referred to as the Open Cut Optimisation Modification (the Modification)) under section 75W of the Environmental Planning and Assessment Act, 1979 (EP&A Act).

Todoroski Air Sciences has been engaged by MCO to prepare an air quality assessment for the Modification.

1.1 Background

MCO is the operator of the Moolarben Coal Complex on behalf of the Moolarben Joint Venture (Moolarben Coal Mines Pty Ltd (MCM), Sojitz Moolarben Resources Pty Ltd and a consortium of Korean power companies). MCM and MCO are wholly owned subsidiaries of Yancoal Australia Limited (Yancoal).

Mining operations at the Moolarben Coal Complex are approved until 31 December 2038 and are carried out in accordance with Project Approval (05_0117) (Moolarben Coal Project Stage 1) and Project Approval (08_0135) (Moolarben Coal Project Stage 2).

1.2 Previous modifications

Previously, detailed air quality impact assessments have been prepared for the Moolarben Coal Complex by Todoroski Air Sciences for the Moolarben Coal Project Stage 1 Optimisation Modification (MOD9) (**Todoroski Air Sciences, 2013**), the OC4 South-West Modification (OC4 South-West MOD) (**Todoroski Air Sciences, 2014**) and UG1 Optimisation Modification (UG1 MOD) (**Todoroski Air Sciences, 2015a**). This assessment has incorporated these modifications and has applied a similar methodology for assessing the potential air quality impacts associated with this Modification.

2 MODIFICATION DESCRIPTION

A summary of the description of the proposed Modification is outlined below.

2.1 Open cut production increase and mine sequence

The Stage 1 and Stage 2 Project Approvals authorise the following from open cut operations:

- → The extraction of up to 8 million tonnes per annum (Mtpa) of run-of-mine (ROM) from Stage 1 open cut pits; and
- The extraction of up to 12Mtpa of ROM from Stage 2 open cut pits.

However, the combined total of ROM coal able to be extracted from the Stage 1 and Stage 2 open cuts is currently limited to 13Mtpa.

With no material change to the existing open cut mining fleet, and with changes to the sequencing of open cut mining operations, MCO would be able to optimise operations to achieve the following production:

- Up to 10Mtpa of ROM coal from Stage 1 open cuts (OC1, OC2 and OC3);
- → Up to 16Mtpa of ROM coal from the Stage 2 open cut (OC4); and,
- ★ Combined total (Stage 1 and Stage 2) of up to 16Mtpa of ROM coal.

These changes in open cut production rates would also result in changes to the following:

- → Increase in the combined open cut and underground ROM coal limit from 21 to 24Mtpa (i.e. 16Mtpa from open cuts and 8Mtpa from underground);
- → Increase in coal processing (washing) limit from 13 to 16Mtpa;
- → Increase in the product coal limit from 18 to 22Mtpa;
- → Increase in the product coal rail movements (1 additional train per day on average and 2 additional trains per day at peak);
- → Increase in the annual rate of coal rejects production; and,
- Increase in the size of ROM coal stockpiles and product coal stockpiles.

2.2 Pit disturbance limits

The Modification would involve minor extensions to the disturbance limits of the OC2 and OC3 open cut pits. These extensions are required to enable the following:

- Minor extension of the OC2 western pit limit to provide a stable long-term final landform;
- + Straightening of the western pit limits of OC3 to facilitate safe and efficient mining; and,
- Minor extension of the OC3 eastern pit limit to reflect the latest resource definition results.

There would be no change to OC1 or OC4 disturbance limits for the Modification.

2.3 Other optimisations

MCO has also identified the following additional operational optimisations, which form part of the scope of the Modification:

- Installation of water treatment facilities to support authorised discharge under Environmental Protection Licence (EPL) release conditions, and associated increase in the rate of controlled releases, when required;
- + Construction of a bypass coal conveyor to facilitate bypass of ROM coal from the open cuts;
- ★ Additional train loadout bin and conveyor;
- Minor changes to the alignment of the haul road from OC2 to OC3, and the location of the OC3
 Mine Infrastructure Area;
- ★ Additional internal road from OC2 to OC4 via Carrs Gap;
- Ancillary infrastructure (e.g. access tracks, power, services, communications, conveyors and pipelines); and,
- → Ongoing exploration activities within mining lease areas.

3 PROJECT SETTING

The Moolarben Coal Complex is located in the Western Coalfields of New South Wales (NSW), approximately 40 kilometres (km) north of Mudgee.

It is bordered by the Goulburn River to the northwest, Goulburn River National Park to the northeast and Munghorn Gap Nature Reserve to the south. The Ulan Coal Mine is located to the northwest and Wilpinjong Coal Mine is located to the east. Ulan settlement and Cooks Gap are located to the west and southwest, respectively.

Figure 3-1 presents the location of the Moolarben Coal Complex in relation to the neighbouring coal mining operations and **Figure 3-2** identifies privately-owned and mine-owned (or Under Contract/ Purchase Agreement) receptors of relevance to this study. **Appendix A** provides a detailed list of all the privately-owned and mine-owned or Under Contract/ Purchase Agreement receptors considered in this assessment.

Figure 3-3 presents a three-dimensional visualisation of the topography in the vicinity of the Moolarben Coal Complex. The area can be characterised as complex hilly terrain with the majority of the elevated areas forming the Goulburn River National Park and the Munghorn Gap Nature Reserve. The local terrain in this area has a significant effect on wind patterns and the dispersion of dust.

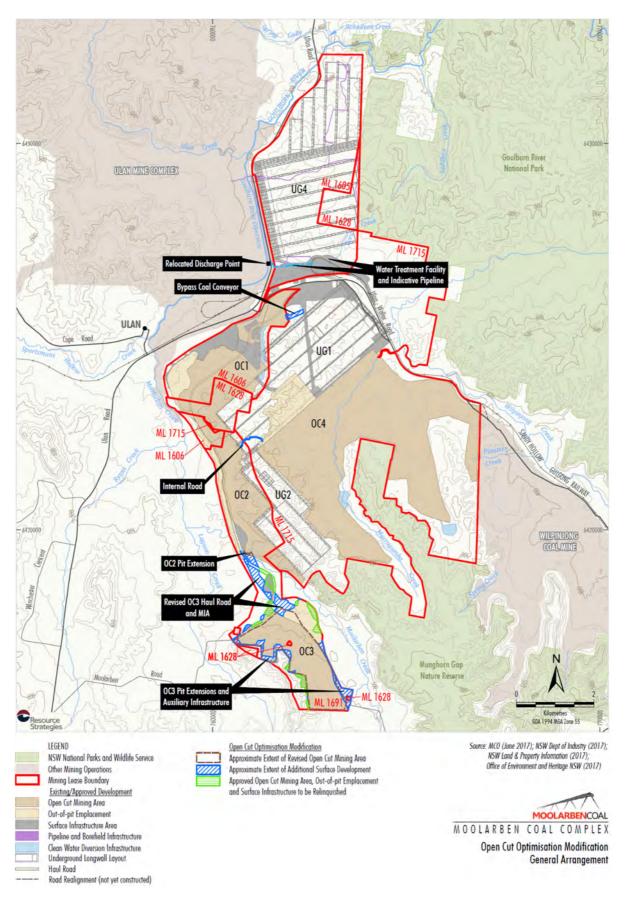
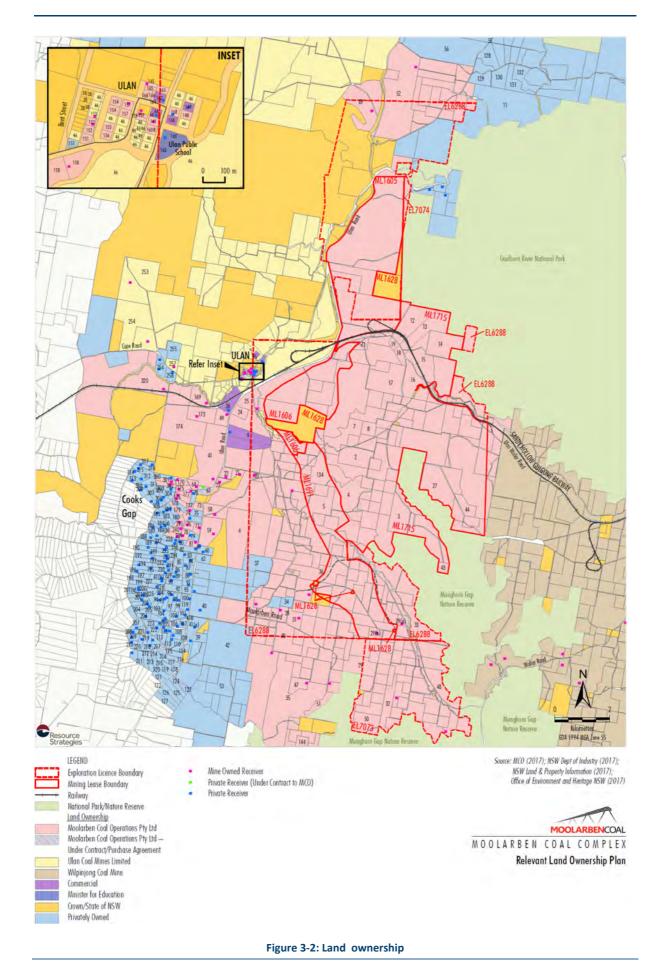



Figure 3-1: Local setting

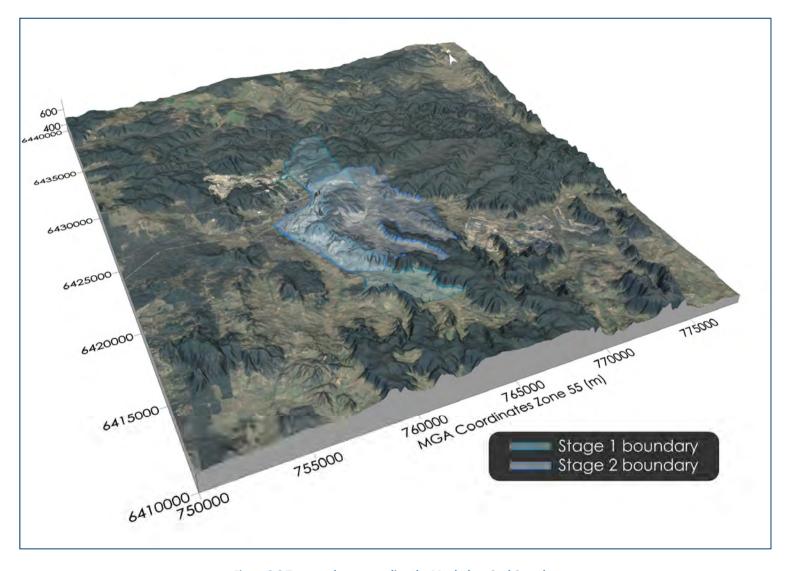


Figure 3-3 Topography surrounding the Moolarben Coal Complex

4 AIR QUALITY ASSESSMENT CRITERIA

Air quality criteria are benchmarks set to protect the general health and amenity of the community in relation to air quality. The sections below identify the potential air emissions generated by the proposed modification and the applicable air quality criteria.

4.1 NSW EPA impact assessment criteria

Table 4-1 summarises the air quality goals that are relevant to this assessment as outlined in the NSW Environment Protection Authority (EPA) document *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales* (**NSW EPA, 2017**).

The air quality goals for total impact relate to the total dust burden in the air and not just the dust from the proposed modification. Consideration of background dust levels needs to be made when using these goals to assess potential impacts.

Table 4-1: NSW EPA air quality impact assessment criteria

Pollutant	Averaging Period	Impact	Criterion
Total suspended particulate (TSP) matter	Annual	Total	90μg/m³
Particulate matter ≤ 10μm	Annual	Total	25μg/m³
(PM ₁₀)	24 hour	Total	50μg/m³
Particulate matter ≤ 2.5μm	Annual	Total	8μg/m³
(PM _{2.5})	24 hour	Total	25μg/m³
Deposited dust	Annual	Incremental	2g/m²/month
Deposited dust	Annual	Total	4g/m²/month

Source: NSW EPA (2017)

µm = micrometre

 μ g/m³ = micrograms per cubic metre

g/m²/month = grams per square metre per month

The Mining State Environment Protection Policy (SEPP) non-discretionary standard with respect to cumulative air quality at private dwellings for PM₁₀ annual average is 30µg/m³.

4.2 NSW Voluntary Land Acquisition and Mitigation Policy

Part of the NSW Voluntary Land Acquisition and Mitigation Policy (VLAMP) dated 15 December 2014 and gazetted on 19 December 2014 describes the NSW Government's policy for voluntary mitigation and land acquisition to address particulate matter impacts from state significant mining, petroleum and extractive industry developments.

Voluntary mitigation rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in **Table 4-2** at any residence or workplace. ¹

Table 4-2: Particulate matter mitigation criteria

Table 4 2.1 difficulate matter mitigation effectia									
Pollutant	Averaging period	Mitigation (Impact Type						
PM ₁₀	Annual	30μg/n	Human health						
PM ₁₀	24 hour	50μg/m	Human health						
TSP	Annual	90μg/m³*		90μg/m³* An		Amenity			
Deposited dust	Annual	2g/m²/month**	4g/m²/month*	Amenity					

Source: NSW Government (2014)

^{*}Cumulative impact (i.e. increase in concentration due to the development plus background concentrations due to all other sources).

^{**}Incremental impact (i.e. increase in concentrations due to the development alone), with zero allowable exceedances of the criteria.

¹ Where any exceedance would be unreasonably detrimental to workers health or carrying out of the business.

Voluntary acquisition rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in **Table 4-3** at any residence, workplace or on more than 25% of any privately owned land where there is an existing dwelling or where a dwelling could be built under existing planning controls (vacant land).

Table 4-3: Particulate matter acquisition criteria

Pollutant	Averaging period	Acquisition (Impact Type							
PM ₁₀	Annual	30μg/n	Human health							
PM ₁₀	24 hour	50μg/m³**		Human health						
TSP	Annual	90μg/m³*		90μg/m³* An		Amenity				
Deposited dust	Annual	2g/m²/month**	4g/m²/month*	Amenity						

Source: NSW Government (2014)

4.3 Project approval criteria

The Stage 1 and 2 Project Approvals provide air quality performance criteria for the Moolarben Coal Complex.

Condition 17, Schedule 3 of Project Approval (05_0117) and Condition 18, Schedule 3 of Project Approval (08_0135) require that all reasonable and feasible avoidance and mitigation measures are employed so that particulate matter emissions generated by the Moolarben Coal Complex do not cause an exceedance of the criteria presented in **Table 4-4**, **Table 4-5** and **Table 4-6**.

Table 4-4: Long term impact assessment criteria for particulate matter

Pollutant	Averaging period	^d Criterion
TSP	Annual	^a 90μg/m³
PM10	Annual	^а 30µg/m³

Source: Table 5 of Project Approval (05_0117) and Table 8 of Project Approval (08_0135)

Table 4-5: Short term impact assessment criterion for particulate matter

Pollutant	Averaging period	^d Criterion
PM10	24 hour	^a 50μg/m³

Source: Table 6 of Project Approval (05_0117) and Table 9 of Project Approval (08_0135)

Table 4-6: Long term impact assessment criteria for deposited dust

Pollutant	Averaging period	Maximum increase in deposited dust level	Maximum total deposited dust level
^c Deposited dust	Annual	^b 2g/m²/month	^a 4g/m²/month

Source: Table 7 of Project Approval (05_0117) and Table 10 of Project Approval (08_0135)

4.4 Environmental Protection Licence operating conditions

EPL 12932 provides qualitative operating conditions and monitoring requirements for air pollution at the Moolarben Coal Complex.

^{*}Cumulative impact (i.e. increase in concentration due to the development plus background concentrations due to all other sources).

^{**}Incremental impact (i.e. increase in concentrations due to the development alone), with up to 5 allowable exceedances of the criteria over the life of the development.

^a Cumulative (i.e. incremental increase in concentrations due to the Moolarben Mine Complex plus background concentrations due to all other sources);

^b Incremental impact (i.e. incremental increase in concentrations due to the Moolarben Mine Complex on its own);

^c Deposited dust is to be assessed as insoluble solids as defined by Standards Australia, AS/NZS 3580,10,1:2003: Methods for Sampling and Analysis of Ambient Air – Determination of Particulate Matter – Deposited Matter – Gravimetric Method; and

^d Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents, illegal activities or any other activity agreed by the Secretary.

Condition O3 of EPL 12932 states:

O3 Dust

- O3.1 All areas in or on the premises must be maintained in a condition that prevents or minimises the emission into the air of air pollutants (which includes dust).
- O3.2 Any activity in or on the premises must be carried out by such practicable means as to prevent or minimise the emission into the air of air pollutants (which includes dust).
- O3.3 Any plant in or on the premises must be operated by such practicable means as to prevent or minimise the emission into the air or air pollutants (which includes dust).
- EPL 12932 does not provide any specific concentration limits relating to air pollution.

5 EXISTING ENVIRONMENT

This section describes the existing environment including the climate and ambient air quality in the area surrounding the Moolarben Coal Complex.

5.1 Local climate

Long term climatic data collected at the Bureau of Meteorology (BoM) weather station at Gulgong Post Office were analysed to characterise the local climate in the proximity of the Moolarben Coal Complex. The Gulgong Post Office is located approximately 25km southwest of the Moolarben Coal Complex and is the nearest BoM weather station with available long-term climate statistics.

Table 5-1 and **Figure 5-1** show climatic parameters that have been collected from the Gulgong Post Office over a 23 to 136 year period for the various meteorological parameters.

The data indicate that January is the hottest month with a mean maximum temperature of 31.0 degrees Celsius (°C) and July is the coldest month with a mean minimum temperature of 2.7°C.

Rainfall peaks during the summer months and declines during winter. The data show January is the wettest month with an average rainfall of 70.8 millimetres (mm) over 5.2 days and April is the driest month with an average rainfall of 43.9mm over 3.9 days.

Relative humidity levels exhibit variability over the day. Mean 9am relative humidity levels range from 61% in October to 84% in June and July. Mean 3pm relative humidity levels vary from 36% in December to 57% in June.

Wind speeds during the colder months tend to have a greater spread between the 9am and 3pm conditions compared to the warmer months. The mean 9am wind speeds range from 4.4 kilometres per hour (km/h) in June to 9.1km/h in October and November. The mean 3pm wind speeds vary from 7.8km/h in April to 11.7km/h in August.

Table 5-1: Monthly climate statistics summary – Gulgong Post Office

Table 3-1. Worthly Climate statistics summary – Guigong Post Office													
Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann.
Temperature													
Mean max. temperature (°C)	31.0	29.9	27.4	23.4	19.1	15.4	14.7	16.5	19.8	23.6	26.8	29.7	23.1
Mean min. temperature (°C)	16.8	16.3	13.8	9.8	6.3	3.7	2.7	3.4	6.1	9.2	12.3	14.9	9.6
Rainfall													
Rainfall (mm)	70.8	61.1	55.2	43.9	45.1	51.2	49.4	46.0	47.4	55.4	59.7	67.4	652.8
Mean No. of rain days (≥1mm)	5.2	4.8	4.6	3.9	4.8	6.0	6.1	5.7	5.3	5.6	5.5	5.5	63.0
9am conditions													
Mean temperature (°C)	21.7	20.6	18.9	15.8	11.3	7.7	6.7	8.5	12.6	16.5	18.3	20.8	15.0
Mean relative humidity (%)	64	71	71	70	79	84	84	76	70	61	63	62	71
Mean wind speed (km/h)	8.2	6.7	6.2	5.9	5.0	4.4	4.9	6.1	7.7	9.1	9.1	8.9	6.9
3pm conditions													
Mean temperature (°C)	29.5	28.4	26.2	22.3	18.0	14.3	13.5	15.3	18.5	22.1	25.1	28.2	21.8
Mean relative humidity (%)	37	42	41	42	49	57	54	46	44	40	39	36	44
Mean wind speed (km/h)	9.6	8.5	7.9	7.8	9.0	8.8	9.9	11.7	11.4	11.5	11.4	11.2	9.9

Source: Bureau of Meteorology (2017), accessed June 2017

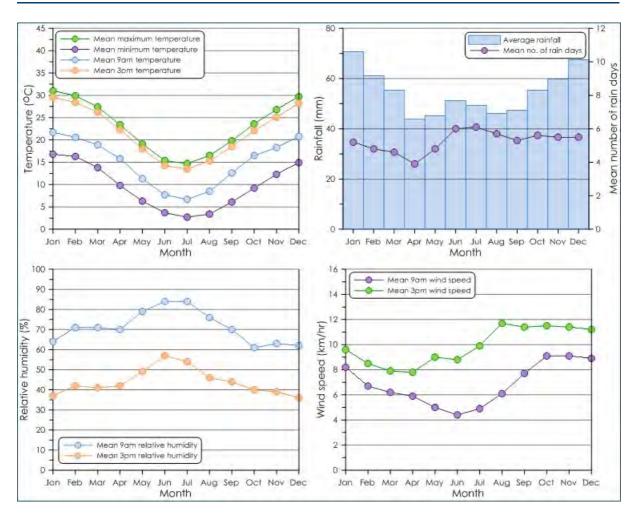


Figure 5-1: Monthly climate statistics summary – Gulgong Post Office

5.2 Local meteorological conditions

MCO operates a meteorological station (WS3) as required by EPL 12932, with an additional station (WS1) used to supplement data when required. The location of these stations are shown in **Figure 5-2**.

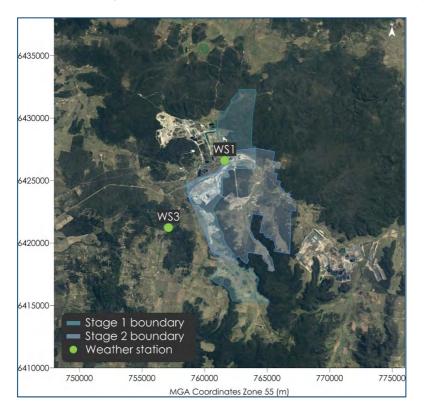


Figure 5-2: MCO weather station locations

Annual and seasonal windroses prepared from the available data collected for the 2011 calendar period for WS1 are presented in **Figure 5-3**. WS3 was commissioned in late 2011 with data only available from September 2011. Annual and seasonal windroses prepared from the available data collected for the 2012 calendar period for WS3 are presented in **Figure 5-4** for comparison to the WS1 data.

Analysis of the windroses from the two weather stations indicates very similar patterns with winds generally flowing along an east-west axis on an annual basis and very few winds from the north and south directions. The location of WS3 is subject to a high portion of drainage flows compared to WS1 as indicated by the light winds from the southwest.

In summer the winds predominately occur from the east. The autumn and spring wind distributions shows similarities with predominant winds from the east and progressively lighter winds originating from the east-northeast to the northeast. During winter, the dominant winds arise from the west-southwest and west. In all seasons, WS3 records a high percentage of low wind speed winds from the southwest.

Windroses for the 2013 to 2016 periods for WS3 are presented in **Appendix B**. A review of the annual windroses indicate similar wind patterns.

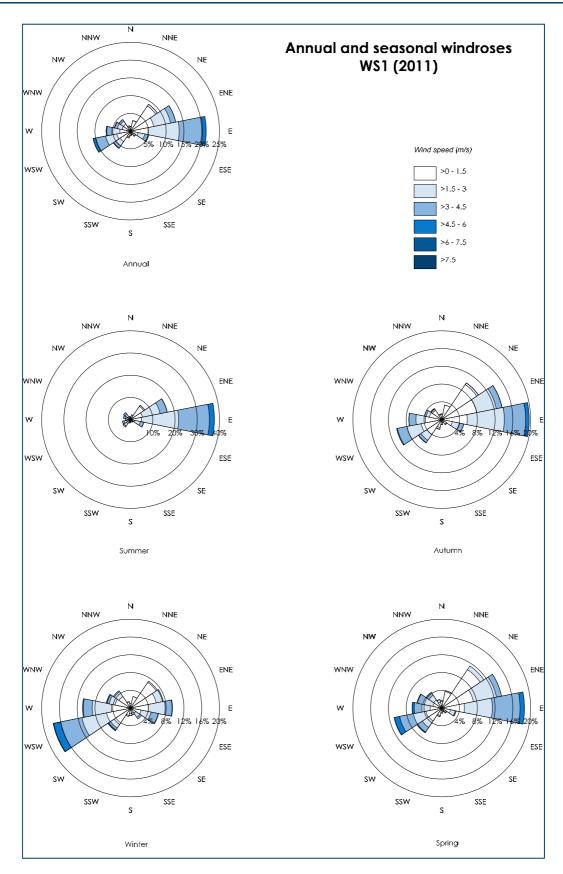


Figure 5-3: Annual and seasonal windroses for WS1 (2011)

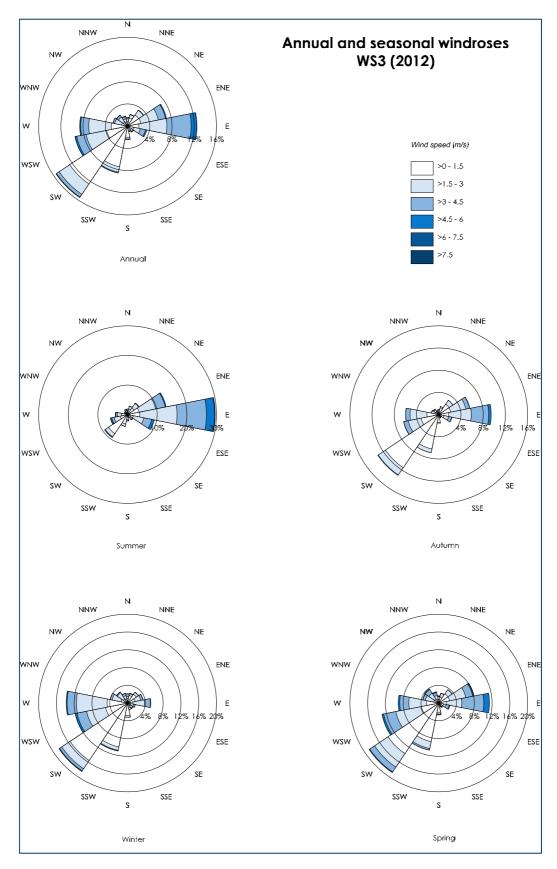


Figure 5-4: Annual and seasonal windroses for WS3 (2012)

5.3 Local air quality monitoring

The main sources of particulate matter in the wider area include active mining, agricultural activities, emissions from local anthropogenic activities such as motor vehicle exhaust and domestic wood heaters, urban activity and various other commercial and industrial activities.

This section reviews the ambient monitoring data collected from a number of ambient monitoring locations in the vicinity of the Moolarben Coal Complex. The monitoring data reviewed in this assessment include data collected at six Tapered Element Oscillating Microbalances (TEOMs) measuring PM₁₀, two High Volume Air Samplers (HVAS) measuring PM₁₀ and 13 dust deposition gauges measuring dust fallout.

Figure 5-5 shows the approximate location of each of the monitoring stations reviewed in this assessment

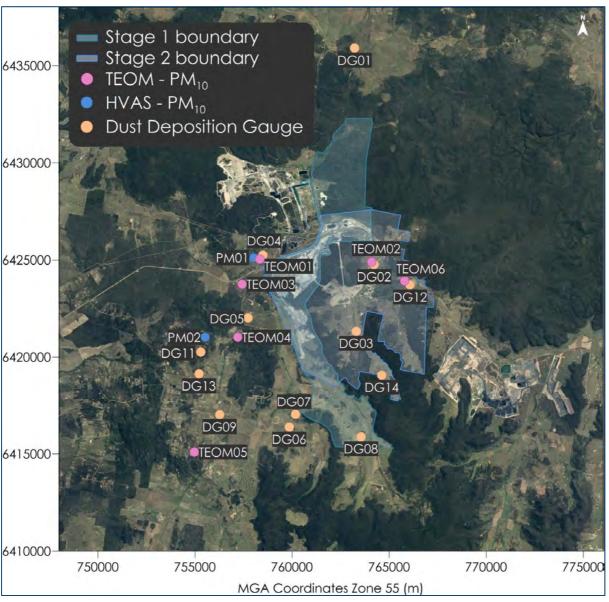


Figure 5-5: Monitoring locations

5.3.1 TEOM monitoring

A summary of the available ambient TEOM PM_{10} monitoring data is presented in **Table 5-2**. Recorded 24-hour average PM_{10} concentrations are presented in **Figure 5-6**.

The monitoring data in **Table 5-2** include all emission sources in the general vicinity of the Moolarben Coal Complex. Where TEOM datasets are less than 75% complete for the annual period, they have not been included in the annual average analysis. The annual average PM_{10} concentrations for the monitoring stations were below the relevant criterion of $25\mu g/m^3$ for the period review.

Table 5-2: Summary of TEOM PM₁₀ levels MCO monitoring stations (μg/m³)

Station ID	2011	2012	2013	2014	2015	2016
Station ID	2011		al average	2014	2013	2010
TEOM 01	10.3	11.3	12.7	14.0	12.5	13.1
TEOM 02 (1)					12.5	
	9.3	10.3	12.4	11.2	-	-
TEOM 03 ⁽²⁾	-	-	-	-	-	-
TEOM 04 (3)	-	9.0	10.8	12.8	9.0	11.7
TEOM 05 ⁽⁴⁾	-	-	-	10.8	8.7	8.5
TEOM 06 (5)	-	-	-	-	-	11.2
		Maximum 2	4-hour average			
TEOM 01	31	41	47	56	64	42
TEOM 02 ⁽¹⁾	26	42	60	54	107	-
TEOM 03 (2)	46	-	-	-	-	-
TEOM 04 (3)	26	42	45	130	63	38
TEOM 05 ⁽⁴⁾	-	-	40	65	86	32
TEOM 06 (5)	-	-	-	=	39	71
	Number of days >50μg/m³					
TEOM 01	-	-	-	3	2	-
TEOM 02 ⁽¹⁾	-	-	1	2	3	-
TEOM 03 ⁽²⁾	-	-	-	-	-	-
TEOM 04 (3)	0	0	0	10	1	0
TEOM 05 ⁽⁴⁾	-	-	-	4	1	-
TEOM 06 (5)	-	-	-	-	0	2

⁽¹⁾ Data available till July 2015 then relocated and renamed TEOM 06.

The maximum 24-hour average PM_{10} concentrations (see **Figure 5-6**) recorded at the MCO TEOM monitors were above the relevant criterion of $50\mu g/m^3$ on a number of occasions during the review period.

Most notable were the elevated levels occurring at all the TEOM monitors during January 2014. A review of the Annual Environmental Management Report for the period (**Moolarben Coal Operations, 2015a**) indicates a visible smoke haze associated with a bushfire as well as road works occurring adjacent to the TEOM 04 as a likely source of the elevated levels.

The exceedance in 2013 was attributed to smoke haze in the surrounding area. Exceedances in 2015 were related to road works undertaken near the relevant monitors and one regional dust event. Two exceedances were recorded in 2016 at TEOM06 and were attributed to hazard reduction burns in the Goulburn River National Park.

 $^{^{(2)}}$ Data available till July 2011 then relocated and renamed TEOM 04.

⁽³⁾ Data available from September 2011.

 $^{^{(4)}}$ Data available from December 2013.

⁽⁵⁾ Data available from August 2015.

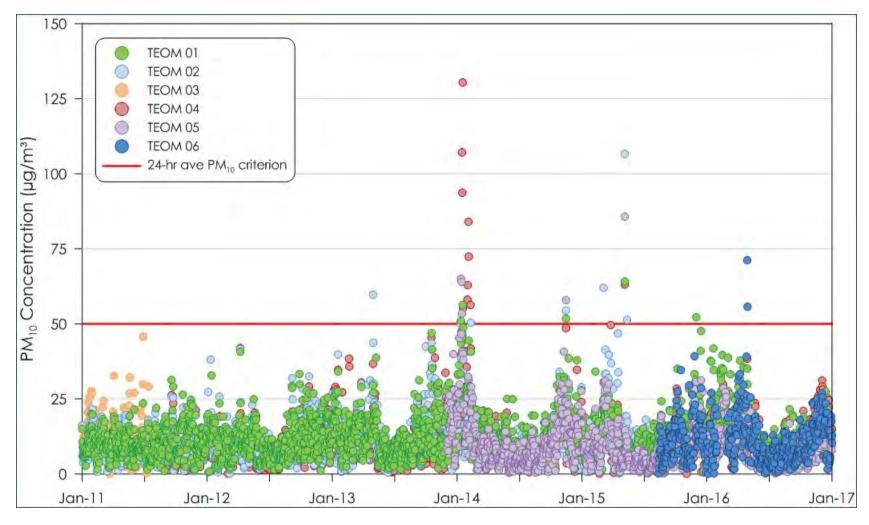


Figure 5-6: TEOM 24-hour average PM₁₀ concentrations at MCO TEOM monitors

5.3.2 HVAS monitoring

A summary of the available HVAS PM_{10} monitoring data collected between January 2011 and December 2016 is shown in **Table 5-3**. Recorded 24-hour average PM_{10} concentrations are presented in **Figure 5-7**.

The monitoring data presented in **Table 5-3** indicate that the annual average PM_{10} concentrations for the monitoring stations are well below the criterion of $25\mu g/m^3$. **Figure 5-7** shows that the recorded 24-hour average PM_{10} concentrations follow a seasonal trend with concentrations nominally highest in the spring and summer months with the warmer weather raising the potential for drier ground elevating windblown dust, pollen levels and the occurrence of bushfires.

Table 5-3: Summary of annul average HVAS PM₁₀ levels (μg/m³)

Year	Annual average			
	PM 01	PM 02		
2011	12.4	10.5		
2012	11.8	9.6		
2013	12.2	10.0		
2014	13.8	11.7		
2015	13.2	10.8		
2016	12.3	10.4		

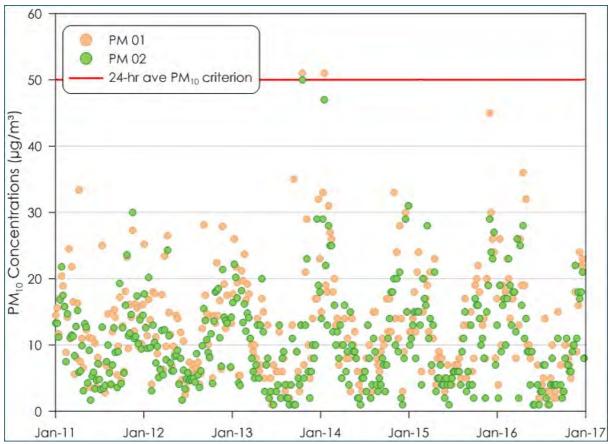


Figure 5-7: HVAS 24-hour average PM₁₀ concentrations

5.3.3 Dust deposition monitoring

Table 5-4 summarises the annual average deposition levels at each gauge during 2011 to 2016.

All gauges recorded an annual average insoluble deposition level below the criterion of 4g/m²/month.

Table 5-4: Annual average dust deposition (g/m²/month)

Dust gauge	2011	2012	2013	2014	2015	2016
DG01	0.4	0.3	0.5	0.8	0.6	0.5
DG04	1.6	1.3	1.3	1.6	1	1.2
DG05	1.5	0.8	1	2	0.8	1.3
DG06	0.6	0.4	0.7	1	0.6	0.6
DG07	0.7	0.8	1	0.9	0.9	0.9
DG08	0.8	0.7	0.7	0.8	0.6	0.7
DG09	0.5	0.4	0.7	2	0.6	0.6
DG11	-	-	0.6	0.8	0.6	0.7
DG12	-	-	-	-	1.5	1
DG13	-	-	-	-	0.7	0.7

6 DISPERSION MODELLING APPROACH

6.1 Modelling scenarios

This assessment considers three mine plan years (scenarios) to represent the proposed Modification over the life of the mine, Year 2019, Year 2021 and Year 2026. The scenarios chosen represent potential worst-case impacts in regard to the quantity of material extracted in each year, the location of the operations and the potential to generate dust impacts at the sensitive receptor locations.

Mining operations would consist of a drill and blast, truck, shovel and dozer operation to remove overburden material and extract the coal resources. Overburden emplacement would typically occur behind the progression of the mine extraction with rehabilitation of emplacement areas progressing as they are completed. The active mining areas and exposed areas are to be kept to a minimum for the efficiency of the operation and this also has a positive effect in minimising the potential amount of dust levels generated from the operations.

Indicative mine plans for each of the assessed scenarios are presented in Figure 6-1 to Figure 6-3.

During Year 2019 (see **Figure 6-1**), all four open cut pits are in operation at the proposed maximum combined Stage 1 and 2 open cut mining rate of 16Mtpa. ROM coal is transported to the Coal Handling and Preparation Plant (CHPP) by haul truck from OC1, OC2 and OC3 with a conveyor used to deliver ROM coal from OC4. The total combined ROM from the open cut (16Mtpa) and underground operations (6Mtpa) is 22Mtpa and the total product coal is at 19Mtpa.

In Year 2021 (see **Figure 6-2**), operations in OC2 have been completed. Mining operations continue in the other open cuts at the proposed maximum rate of 10Mtpa from the Stage 1 open cuts and combined Stage 1 and 2 open cut mining rate of 16Mtpa. The total combined ROM from the open cut (16Mtpa) and underground (8Mtpa) operations is at the proposed maximum of 24Mtpa, and the total product coal is at 21Mtpa.

For Year 2026 (see **Figure 6-3**), OC4 is the only operational open cut and is operating at the proposed maximum rate of 16Mtpa. The total combined ROM from the open cut (16Mtpa) and underground (6Mtpa) operations is 22Mtpa and the total product coal is at 20Mtpa.

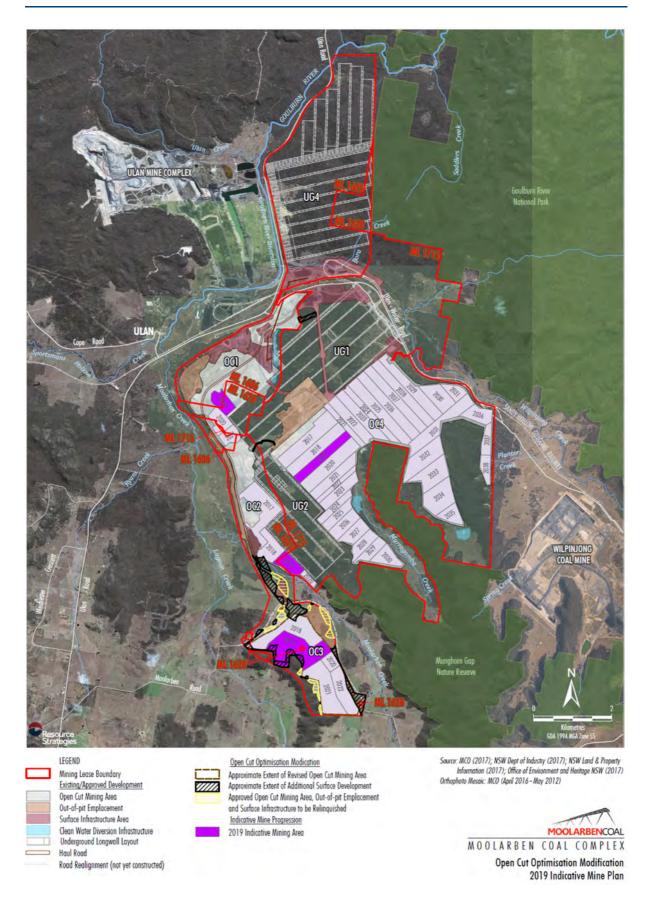


Figure 6-1: Indicative mine plan for 2019

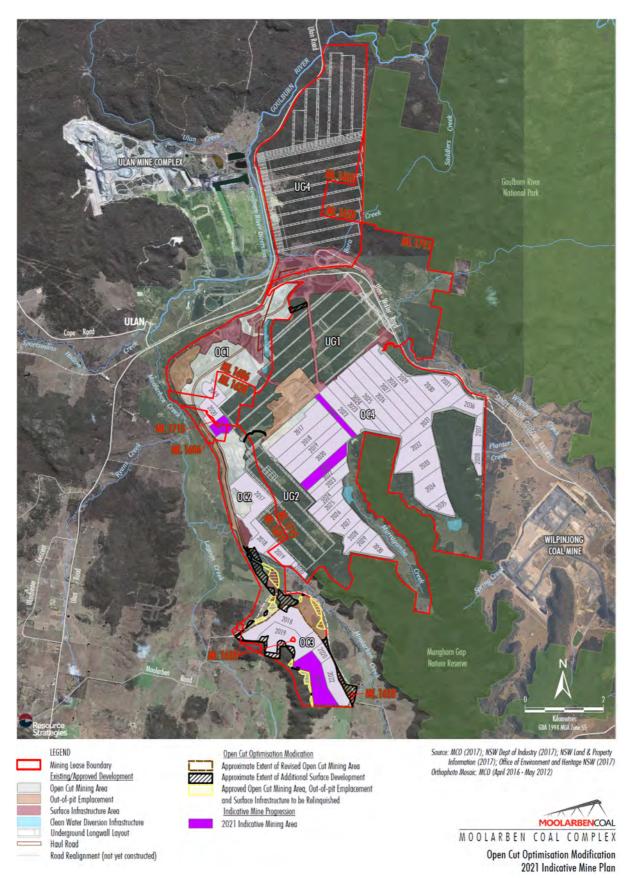


Figure 6-2: Indicative mine plan for 2021

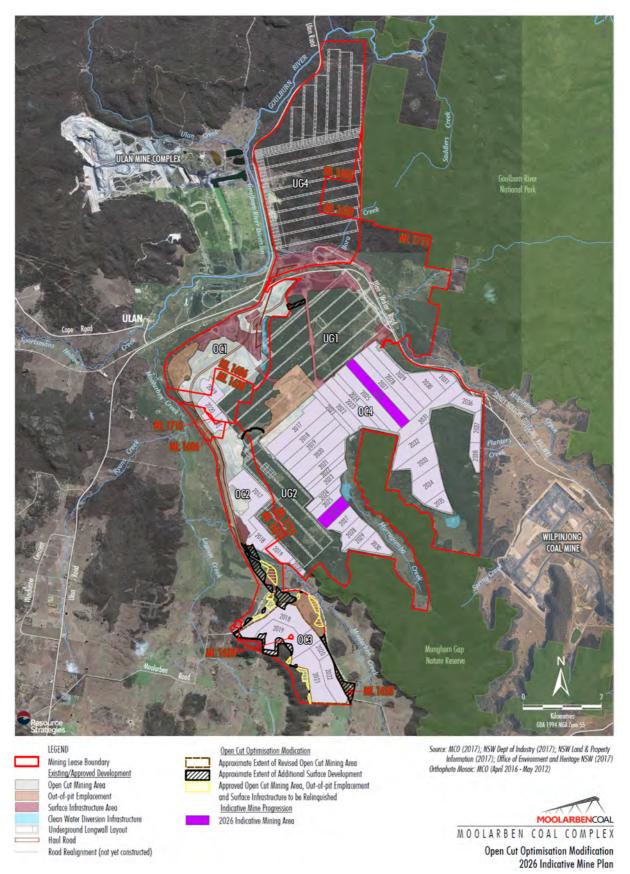


Figure 6-3: Indicative mine plan for 2026

6.2 Emissions estimation

For the modelled scenario, dust emission estimates have been calculated by analysing the various types of dust generating activities taking place and utilising suitable emission factors.

The emission factors were sourced from both locally developed and United States Environmental Protection Agency (US EPA) developed documentation. Total dust emissions from all significant dust generating activities for the project are presented in **Table 6-1**. Detailed emission inventories and emission estimation calculations are presented in **Appendix C**.

The estimated emissions presented in **Table 6-1** are commensurate with a mining operation utilising reasonable and feasible best practice dust mitigation applied where applicable. Further details on the dust control measures applied for the Moolarben Coal Complex are outlined in **Section 6.3**. Where relevant, mitigation measures have been incorporated in the emissions estimations including those identified in the EPL 12932 Coal Mine Particulate Matter Control Best Practice Pollution Reduction Scheme.

Table 6-1: Estimated emission for the proposed modification (kg of TSP)

ACTIVITY	2019	2021	2026
Overburden			
OB - Stripping Topsoil - OC1	1,356	1,290	-
OB - Stripping Topsoil - OC2	1,472	-	-
OB - Stripping Topsoil - OC3	1,419	1,470	-
OB - Stripping Topsoil - OC4	2,053	3,540	6,300
OB - Drilling - OC1	1,304	1,155	-
OB - Drilling - OC2	1,415	-	-
OB - Drilling - OC3	1,364	1,316	-
OB - Drilling - OC4	3,291	4,351	8,184
OB - Blasting - OC1	11,953	10,582	-
OB - Blasting - OC2	12,972	-	-
OB - Blasting - OC3	12,502	12,057	-
OB - Blasting - OC4	30,157	39,874	75,010
OB - Excavator loading OB to haul truck - OC1	23,153	20,496	-
OB - Excavator loading OB to haul truck - OC2	25,126	-	-
OB - Excavator loading OB to haul truck - OC3	24,215	23,355	-
OB - Excavator loading OB to haul truck - OC4	35,048	56,226	105,337
OB - Excavator rehandle - OC1	-	512	-
OB - Excavator rehandle - OC3	-	584	-
OB - Excavator rehandle - OC4	1,168	1,699	3,196
OB - Hauling to dump - OC1 (OC1 void)	169,248	-	-
OB - Hauling to dump - OC1 (OC1 dump)	82,586	146,817	-
OB - Hauling to dump - OC2	179,250	-	-
OB - Hauling to dump - OC3	104,773	101,727	-
OB - Hauling to dump - OC4 (930 E)	64,424	101,353	137,761
OB - Hauling to dump - OC4 (830 E)	149,614	221,105	304,955
OB - Hauling to dump - OC4 (830 E) (south)	-	-	203,303
OB - Emplacing at dump - OC1 (OC1 void)	11,576	-	-
OB - Emplacing at dump - OC1 (OC1 dump)	11,576	20,496	-
OB - Emplacing at dump - OC2	25,126	-	-
OB - Emplacing at dump - OC3	24,215	23,355	-
OB - Emplacing at dump - OC4	35,048	56,226	105,337
OB - Dozers on OB (dump and pit) - OC1	-	134,636	-
OB - Dozers on OB (dump and pit) - OC2	309,620	-	-
OB - Dozers on OB (dump and pit) - OC3	155,689	149,664	-
OB - Dozers on OB (dump and pit) - OC4	681,262	844,749	1,110,055
Coal			

ACTIVITY	2019	2021	2026
CL - Drilling - OC1	39	82	-
CL - Drilling - OC2	106	_	_
CL - Drilling - OC3	92	218	-
CL - Drilling - OC4	243	176	480
CL - Blasting - OC1	3,234	6,831	-
CL - Blasting - OC2	8,841	-	-
CL - Blasting - OC3	7,625	18,086	_
CL - Blasting - OC4	20,168	14,577	39,867
CL - Dozers ripping/pushing/clean-up - OC1	7,756	17,232	-
CL - Dozers ripping/pushing/clean-up - OC2	20,573	-	_
CL - Dozers ripping/pushing/clean-up - OC3	17,742	45,633	_
CL - Dozers ripping/pushing/clean-up - OC4	48,400	36,776	116,727
CL - Loading ROM coal to haul truck - OC1	68,160	143,987	-
CL - Loading ROM coal to haul truck - OC2	186,352	-	-
CL - Loading ROM coal to haul truck - OC3	160,734	381,244	_
CL - Loading ROM coal to haul truck - OC4	425,123	307,275	840,369
CL - Hauling ROM to hopper - OC1	28,508	79,588	-
CL - Hauling ROM to hopper - OC2	154,950	73,300	_
CL - Hauling ROM to hopper - OC3	198,410	476,588	_
CL - Hauling ROM to hopper - OC4	100,949	87,310	278,086
CL - Unload to hopper or stockpile (OC1, OC2, OC3)	207,623	236,354	278,080
CL - Unload to hopper or stockpile (OC4)	212,562	153,637	420,184
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper	110,621	125,929	420,164
CL - Rehandling - OC4 - at hopper			111,937
CHPP - Transfer to Sizing Station (OC4)	113,253 1,370	81,858	,
· · ·	1,370	990	2,708
Bypass CL - bypass - direct dumping at bypass stockpile (OC1 + OC3)		169	
CL - bypass - conveying to bypass stockpile (OC1 + OC5) CL - bypass - conveying to bypass stockpile (OC4) (1 transfer point)	-	205	1 124
CL - bypass - discharge to bypass stockpile (OC4)	-	205	1,124 1,124
CL - bypass - transfer station (OC)	-	374	
CL - bypass - bypass coal sizing station	-	5,967	1,124 17,924
CL - bypass - OC bypass coal sizing station CL - bypass - OC bypass coal conveyed to product stockpile	-	3,967	376
CL - bypass - Oc bypass coal conveyed to TLO (3 transfer points)	-	1,122	
Open Cut	-	1,122	3,371
CHPP - Conveying to Sizing Station (OC1+OC2+OC3)	158	158	
CHPP - Transfer to Sizing Station (OC4)	136	785	1 505
CHPP - Sizing Station (OC1+OC2+OC3)	43,200	36,829	1,585 25,276
CHPP - Conveying to CHPP (OC)	39	30,823	39
CHPP - Washing (OC)	39	33	33
CHPP - Conveying to CHPP Product Stockpile (OC)	208	208	208
CHPP - Unloading to CHPP Product Stockpile (OC)	1,393	1,195	801
CHPP - Reclaim and Conveying to TLO (3 transfer points)	4,179	4,321	4,616
Underground	4,173	4,321	4,010
CHPP - Conveyor transfer point at UG portal entrance	310	310	310
CHPP - Conveyor to UG1 pit top	386	386	386
CHPP - Unload to ROM stockpile	1,024	1,354	1,354
CHPP - Transfer to sizing station (at product coal stockpile area)	1,024	1,354	1,354
CHPP - Unload to product stockpile	1,024	1,354	1,354
CHPP - Reclaim and conveyor to TLO (3 transfer points)	3,072	4,062	4,062
Dozers	3,072	7,002	7,002
CHPP - Dozer pushing ROM coal at UG1 pit top	27,746	36,694	27,063
CHPP - Dozer pushing ROM coal (bypass) at product stockpile	37,517	13,712	41,173
CHPP - Dozer pushing Rolly coal	59,526	51,069	34,312
CHPP - Dozer pushing Product coal CHPP - Dozer pushing bypass (UG + OC) Product coal	-	48,452	59,498
Rejects		70,434	J3,430
CHPP - Conveying rejects from CHPP to loadout	183	183	183
CHPP - Loading rejects	145	121	90
CHPP - Hauling rejects	126,674	114,889	68,714
CHPP - Unloading rejects	126,674	114,889	90
CHEFF - OHIOAUHIK TEJECTS	143	121	30

ACTIVITY	2019	2021	2026
Wind Erosion			
OC1 - Active mining area (pit, active dumping area) (OC1 void)	8,713	-	-
OC1 - Active mining area (pit, active dumping area) (OC1)	51,502	31,152	-
OC1 - Inactive area (no rehabilitation) (OC1 north)	4,977	-	-
OC1 - Inactive area (no rehabilitation) (OC1 south)	5,576	4,977	-
OC1 - Partially rehabilitated (e.g. stable and seeded) (OC1 north)	-	2,614	3,118
OC1 - Partially rehabilitated (e.g. stable and seeded)	12,123	19,502	
OC1 - Hard Stand Areas (Workshops, roads, conveyors etc)	105,239	85,179	94,952
OC2 - Active mining area (pit, active dumping area)	51,170	-	-
OC2 - Inactive area (no rehabilitation)	1,216	1,216	-
OC2 - Partially rehabilitated (e.g. stable and seeded)	21,224	-	-
OC2 - Hard Stand Areas (Workshops, roads, conveyors etc)	17,850	17,850	17,851
OC3 - Active mining area (pit, active dumping area)	120,318	110,475	-
OC3 - Inactive area (no rehabilitation)	-	-	-
OC3 - Partially rehabilitated (e.g. stable and seeded)	16,111	44,602	-
OC3 - Hard Stand Areas (Workshops, roads, conveyors etc)	31,969	31,969	-
OC4 - Active mining area (pit, active dumping area)	168,904	129,421	156,671
OC4 - Active mining area (pit, active dumping area) (OC4 south)	-	-	112,024
OC4 - Inactive area (no rehabilitation)	16,970	16,635	-
OC4 - Partially rehabilitated (e.g. stable and seeded)	18,202	32,449	41,005
OC4 - Hard Stand Areas (Workshops, roads, conveyors etc)	28,968	29,589	18,343
Stockpile - ROM coal stockpile (OC1)	3,107	3,107	3,105
Stockpile - ROM coal stockpile (UG)	769	769	768
Stockpile - ROM coal stockpile (OC3)	1,471	1,471	-
Stockpile - ROM coal stockpile (OC4)	3,336	3,336	3,953
Stockpile - Bypass Coal Stockpile	-	5,143	5,143
Stockpile - Product Coal Stockpile	2,384	4,526	2,383
Grading roads	141,796	141,796	141,796
Total TSP emissions (kg/yr)	5,439,254	5,236,797	4,768,420

6.2.1 Emissions from other mining operations

In addition to the estimated dust emissions from the proposed modification, emissions from all nearby approved mining operations were also modelled, in accordance with their current consent (or current proposed project), to assess potential cumulative dust effects.

Emissions estimates from these sources were derived from information provided in the air quality assessments available in the public domain at the time of modelling. These estimates are likely to be conservative, as in many cases, mines do not continually operate at the maximum extraction rates assessed in their respective environmental assessments. **Table 6-2** summarises the emissions adopted in this assessment for each of the nearby mining operations.

Table 6-2: Estimated emissions from nearby mining operations (kg of TSP)

Mining operation	2019	2021	2026
Ulan Coal Mine (1)	2,322,489	1,283,404	1,280,276
Wilpinjong Coal Mine (2)	6,874,251	6,342,619	5,033,886

⁽¹⁾ PAEHolmes (2009)

6.3 Existing air quality monitoring and management

The existing Air Quality Management Plan (**Moolarben Coal Operations, 2015c**) describes the air quality management and monitoring regime at the Moolarben Coal Complex.

⁽²⁾ Todoroski Air Sciences (2015b)

The existing Air Quality Management Plan (Moolarben Coal Operations, 2015c) describes:

- Project Approval air quality criteria;
- Air quality monitoring locations and frequency, comprising:
 - Four TEOMs measuring PM₁₀ continuously (i.e. real-time monitor);
 - Two HVAS measuring PM₁₀ on a one day in six cycle; and
 - Eleven dust deposition gauges;
- Ongoing dust management measures; and
- Performance indicators (real-time response triggers) which, if certain thresholds are reached, trigger the implementation of additional dust management measures.

Operational air quality management measures used at the Moolarben Coal Complex include the implementation of best practice management techniques to proactively reduce dust (as described in the EPL 12932 Coal Mine Particulate Matter Control Best Practice Pollution Reduction Scheme), and reactive measures such as enforcing a cessation of particular operations during unfavourable conditions.

MCO has implemented a comprehensive air quality management system that assists in pro-active management of dust emissions. The system provides daily reports and predictions of upcoming meteorological conditions and potential dust risks. Based on prevailing wind conditions, MCO can strategically alter its operations to reduce these impacts.

Real-time air quality monitoring is used by MCO to provide notification of dust levels in the surrounding environment and at locations representative of receptor locations. When certain thresholds are reached, indicating excessive ambient dust levels, MCO is able to take action to minimise the generation of dust emissions before there is any significant effect at the receptor locations.

6.4 Modelling methodology

The dispersion modelling methodology applied in this assessment is the same as that applied in the MOD9, OC4 South-West MOD and UG1 MOD assessments using the CALPUFF modelling suite.

The CALMET meteorological modelling has been revised to incorporate the changes to the local mine terrain for the proposed modelling scenario which affect the local wind flows of the area (e.g. to account for the updated sequencing of the open cut pits). This assessment used the same meteorological conditions assessed in the MOD9 assessment which were based on data for January 2011 to December 2011 from six surrounding monitoring sites.

Dust emissions from each activity were represented by a series of volume sources and included in the CALPUFF model via an hourly varying emission file. Meteorological conditions associated with dust generation (such as wind speed) and levels of dust generating activity were considered in calculating the hourly varying emission rate for each source.

It should be noted that as a conservative measure, the effect of the precipitation rate (rainfall) in reducing dust emissions has not been considered in this assessment.

7 DISPERSION MODELLING RESULTS

The dispersion model predictions for each of the assessed scenarios are presented in this section. The results presented include those for the operation in isolation (incremental impact) and the operation with other sources (total (cumulative) impact). The results show the estimated:

- Maximum 24 hour average PM_{2.5} and PM₁₀ concentrations;
- ★ Annual average PM_{2.5} and PM₁₀ concentrations;
- Annual average TSP concentrations; and,
- ★ Annual average dust (insoluble solids) deposition rates.

It is important to note that when assessing impacts per the maximum 24-hour average PM_{2.5} and PM₁₀ criteria, the predictions show the highest predicted 24-hour average concentrations that were modelled at each point within the modelling domain for the worst day (a 24-hour period) in the one year long modelling period. When assessing the total (cumulative) 24-hour average impacts based on model predictions, challenges arise with identification and quantification of emissions from non-modelled sources over the 24-hour period. Due to these factors, the 24-hour average impacts need to be calculated differently to annual averages and as such, the predicted total (cumulative) impacts for maximum 24-hour average PM_{2.5} and PM₁₀ concentrations have been addressed specifically in **Section 7.3.**

Each of the sensitive receptors shown in **Figure 3-2** and detailed in **Appendix A** were assessed individually as discrete receptors with the predicted results presented in tabular form for each of the assessed scenarios in **Appendix D**.

Associated isopleth diagrams of the dispersion modelling results are presented in Appendix E.

To account for sources not explicitly included in the model, and to fully account for all cumulative dust levels, the unaccounted fractions of background dust levels (which arise from the other non-modelled sources), were added to the annual average model predictions.

The contribution of background dust levels was estimated by modelling the past (known) mining activities during 2011 and comparing model predictions with the actual measured data from the corresponding monitoring stations. The average difference between the measured and predicted PM_{10} , TSP and deposited dust levels from each of the monitoring points was considered to be the contribution from other non-modelled dust sources.

In this case, the estimated background levels for TSP, PM₁₀ and deposited dust are identical to the levels applied in the MOD9 assessment (**Todoroski Air Sciences, 2013**). **Table 7-1** outlines the estimated annual average contribution from other non-modelled dust sources for the area surrounding the Moolarben Coal Complex incorporating the Modification.

Table 7-1: Estimated annual average contribution from other non-modelled dust sources

	Pollutant	Background level	Unit			
	TSP	13.5	μg/m³			
PM ₁₀		5.4	μg/m³			
	Dust deposition	0.6	μg/m³			

In the absence of available PM_{2.5} monitoring data for the area, the background levels applied in the recent air quality assessment for the Wilpinjong Coal Mine (**Todoroski Air Sciences, 2015b**) are considered appropriate with a background PM_{2.5} level of $4.3\mu g/m^3$.

7.1 Summary of modelling predictions (incremental Project-only impacts)

No exceedances of the criteria for $PM_{2.5}$, PM_{10} , TSP or dust deposition are predicted at any privately-owned receptor due to emissions from the Moolarben Coal Complex incorporating the Modification.

Table 7-2 summarises the sensitive receptor locations where impacts are predicted to exceed relevant assessment criteria. The receptor locations highlighted in grey are identified as mine-owned or Under Contract/ Purchase Agreement receptors.

Cumulative 24-hour PM_{2.5} and PM₁₀ impacts are assessed specifically in **Section 7.3**.

Table 7-2: Summary of modelled predictions for the Moolarben Coal Complex including the Modification where predicted impacts exceed assessment criteria

	PM _{2.5} PM ₁₀					TSP	DD					
tor ID	Property Ownership	Total annual average	24	Project -hour average	Total annual average annual							
Receptor	ty C	NEPM		Criterion	Criterion	Criterion	Criterion	Criterion				
æ	8μg/m³ 50μg/m³ Year of impact (level of		50μg/m³	25μg/m³	90μg/m³	2g/m²/mth	4g/m²/mth					
	Prc	Year of imp	act (level of	No of days >E0ug/m³	Year of imp	act (level of	Year of	impact				
	Pro		oact (level of - μg/m³)	No. of days >50μg/m³	•	act (level of · μg/m³)		impact ct - g/m²/mth)				
F			· ·	No. of days >50μg/m³	•	•						
5	мсо	impact	· ·	No. of days >50μg/m³	impact ·	•						
5		impact 2019 (9)	- μg/m³)	No. of days >50μg/m³ 1 70	impact - 2019 (27)	•						

7.2 Comparison of modelling predictions

To show the effect of the Modification relative to the historically approved operations, the key results (maximum 24-hour average and cumulative annual average PM₁₀) for each scenario have been overlayed with results for the nearest corresponding year from the MOD9 assessment (**Todoroski Air Sciences, 2013**) in **Figure 7-1** to **Figure 7-6**.

While there is some variation in the shape of the contours between the modelled years compared, this is largely attributed to the revised staging of operations, the location of activity and also recent approved modifications to other mining operations (i.e. Wilpinjong Coal Mine during Year 2026).

Overall, the comparisons indicate that the predicted dust levels associated with the Modification would be of a generally similar extent to the previously approved operations.

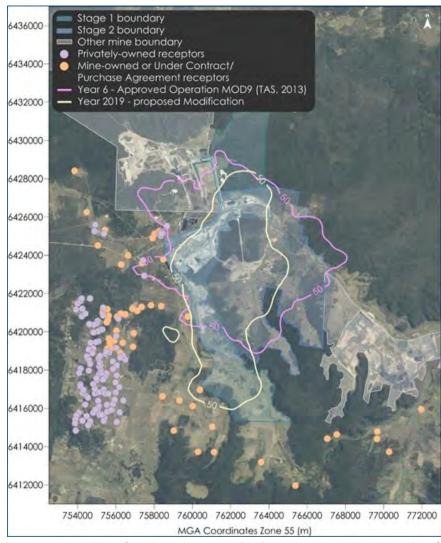


Figure 7-1: Comparison of maximum incremental 24-hour average PM₁₀ concentrations for Year 6 (previously assessed – MOD9) and Year 2019 (the Modification) (μg/m³)

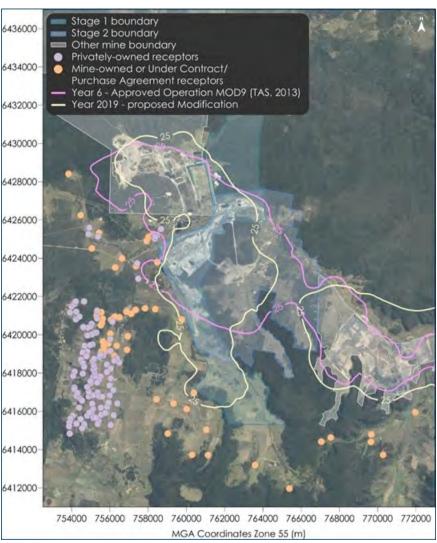


Figure 7-2: Comparison of cumulative annual average PM₁₀ concentrations for Year 6 (previously assessed – MOD9) and Year 2019 (the Modification) (μg/m³)

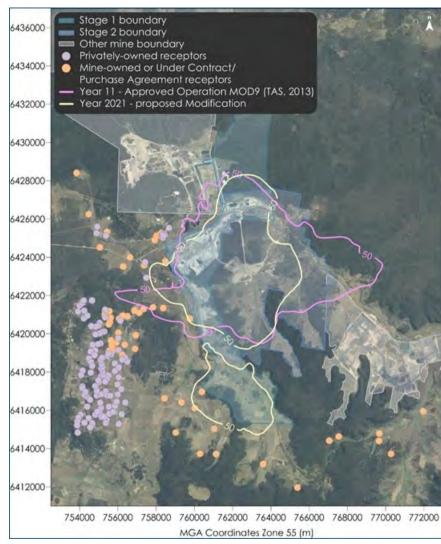


Figure 7-3: Comparison of maximum incremental 24-hour average PM₁₀ concentrations for Year 11 (previously assessed – MOD9) and Year 2021 (the Modification) (μg/m³)

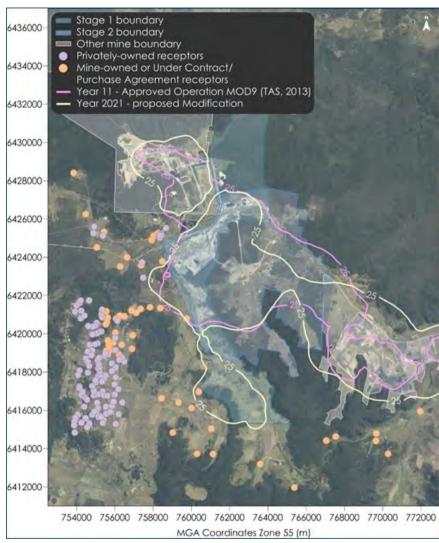


Figure 7-4: Comparison of cumulative annual average PM₁₀ concentrations for Year 11 (previously assessed) and Year 2021 (the Modification) (μg/m³)

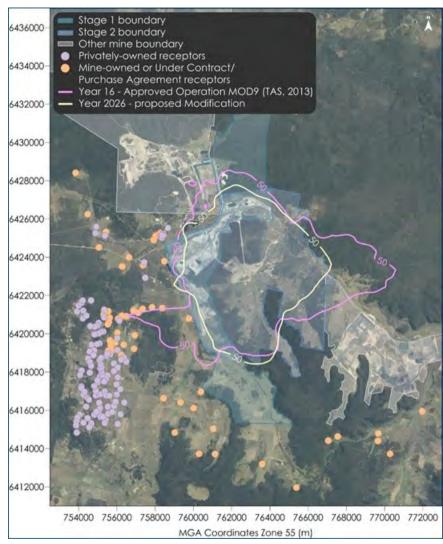


Figure 7-5: Comparison of maximum incremental 24-hour average PM₁₀ concentrations for Year 16 (previously assessed) and Year 2026 (the Modification) (μg/m³)

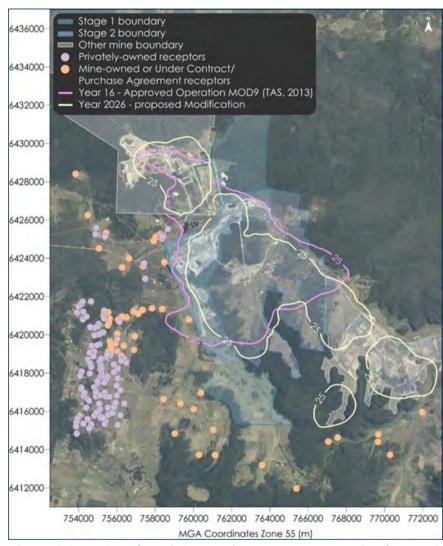


Figure 7-6: Comparison of cumulative annual average PM₁₀ concentrations for Year 16 (previously assessed) and Year 2026 (the Modification) (μg/m³)

7.3 Assessment of total (cumulative) 24-hour average PM_{2.5} and PM₁₀ concentrations

Cumulative 24-hour average PM_{2.5} and PM₁₀ impacts are focused on the closest and most potentially impacted privately-owned receptor locations.

Three PM_{10} monitoring stations operated by MCO where suitable ambient monitoring data are available over the contemporaneous modelling period have been chosen to be representative of the privately-owned receptor locations. **Figure 7-7** shows the location of each of these monitors in relation to the Modification and the privately-owned receptor locations assessed.

As there are no readily available ambient $PM_{2.5}$ monitoring data collected near to the Moolarben Coal Complex, monitoring data from the NSW Office of Environment and Heritage (OEH) monitoring stations at Muswellbrook and Singleton have been applied for the assessment.

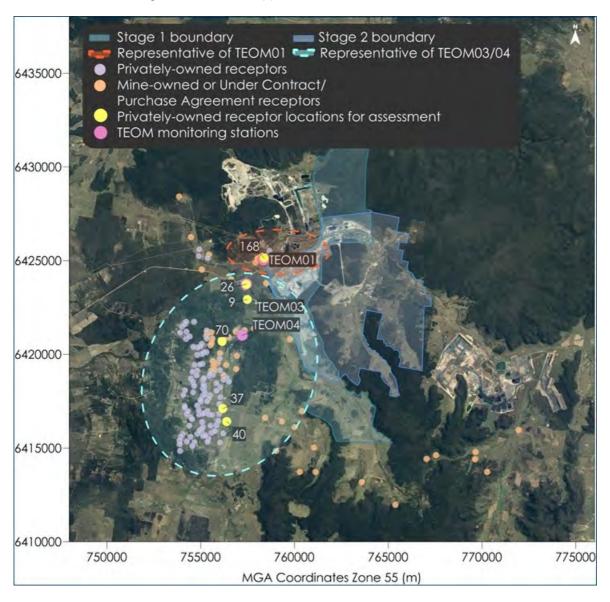


Figure 7-7: Locations available for contemporaneous cumulative impact assessment

7.3.1 Assessment of cumulative PM_{2.5} impacts

To assess the potential cumulative 24-hour average $PM_{2.5}$ impacts due to the Modification, the Victorian EPA approach² with the available ambient $PM_{2.5}$ monitoring data from the NSW OEH monitoring stations at Muswellbrook and Singleton during 2011 has been applied.

This approach is considered suitable for this assessment in the absence of readily available ambient PM_{2.5} monitoring data for the Modification. The monitoring data from Muswellbrook and Singleton monitoring stations are representative of a more densely populated area with greater influences of anthropogenic sources compared to the area surrounding the Moolarben Coal Complex. The monitoring data therefore would provide a conservative assessment of potential cumulative impacts for the area surrounding the Modification.

The 70^{th} percentile of the measured Muswellbrook and Singleton PM_{2.5} monitoring data during 2011 is $10.5\mu g/m^3$ and $8.5\mu g/m^3$, respectively and the average of the 70^{th} percentile levels, $9.5\mu g/m^3$ is considered for the cumulative assessment.

The results of the cumulative assessment are presented in **Table 7-3** for each of the assessed receptors. The results indicate that the predicted cumulative impact would not exceed the relevant criterion of $25\mu g/m^3$ for the receptor locations.

Table 7-3: Cumulative 24-hour average PM _{2.5} assessment - maximum number of additional days above 24-hour average
PM _{2.5} criterion

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	0	0	0
26	Forty North Pty Limited	0	0	0
37	M Stewart	0	0	0
40	JM Devenish	0	0	0
70	DJ & A Coventry	0	0	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

7.3.2 Assessment of cumulative PM₁₀ impacts

An assessment of cumulative 24-hour average PM₁₀ impacts was undertaken in accordance with the methods outlined in Section 11.2 of the *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales* (**NSW EPA**, **2017**). The "Level 2 assessment - Contemporaneous impact and background approach" was applied to assess potential impacts.

Ambient (background) dust concentration data for January 2011 to December 2011 from the TEOM monitors (same data used for MOD9) have been applied in the Level 2 contemporaneous 24-hour average. As the existing mine was operational during this period, it would have contributed to the measured levels for dust in the area on some occasions and needs to be accounted for in the cumulative assessment. Modelling of the actual mining scenario for the Moolarben Coal Complex for the 2011 period was conducted to determine the existing contribution in the measured levels of dust. The results

² The Victorian Government's State Environment Protection Policy (Air Quality Management), **SEPP (2001)** states at Part B, 3(b) "Proponents required to include background data where no appropriate hourly background data exists must add the 70th percentile of one year's observed hourly concentrations as a constant value to the predicted maximum concentration from the model simulation. In cases where a 24-hour averaging time is used in the model, the background data must be based on 24-hour averages.

were applied in the cumulative assessment to minimise potential double counting of existing mine emissions (as they would occur in both the measured data and in the predicted levels), and thus to make a more reliable prediction of the likely cumulative total dust level.

Table 7-4 provides a summary of the findings of the contemporaneous assessment at each of the representative receptor locations. Detailed tables of the full assessment results are provided in **Appendix F**.

Table 7-4: NSW EPA contemporaneous assessment - maximum number of additional days above 24-hour average PM₁₀ criterion

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	1	2	1
26	Forty North Pty Limited	0	1	0
37	M Stewart	1	1	0
40	JM Devenish	1	1	0
70	DJ & A Coventry	1	1	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

The results in **Table 7-4** indicate that there is potential for cumulative 24-hour average PM_{10} impacts to occur at the assessed receptor locations, with the exception of Receptor 168 in Ulan Village.

Further analysis of the predicted cumulative PM_{10} impacts at Receptors 9 and 40 are presented in **Figure 7-8** to **Figure 7-10**. The figures show time series plots of the 24-hour average PM_{10} concentrations predicted to be experienced as a result of the Modification. The light blue bars represent the existing ambient background level at the monitoring location, the dark blue bars represent the potential reduction in background level due to the Modification and the orange bars represent the predicted incremental contribution due to the Modification.

Figure 7-8 to **Figure 7-10** indicate that the majority of predicted exceedances at the locations only marginally exceed the criteria and would be easily mitigated through day-to-day management of the operations.

MCO use predictive meteorological modelling software to predict daily weather events and identify adverse conditions in combination real-time dust monitoring to inform proactive and reactive dust management requirements.

To demonstrate the effectiveness of the implementation of the predictive/ reactive measures at the Moolarben Coal Complex incorporating the Modification, the dispersion modelling was re-run to consider the effects of temporarily pausing activities in the pit and overburden areas during periods of elevated dust.

Only the activities that can be controlled in the pit and overburden areas were ceased in the model, and dust from other sources such as wind erosion was still assumed for the purpose of the revised modelling.

Table 7-5 outlines the maximum number of additional days in a year predicted to exceed the 24-hour criterion with the implementation of reactive measures.

The results indicate that all of the predicted additional exceedance days due to the Modification can be prevented using the predictive/ reactive controls, which would be effective in reducing the incremental contribution of the Modification to cumulative levels.

Table 7-5: NSW EPA contemporaneous assessment - maximum number of additional days above 24-hour average criterion with implementation of predictive/ reactive measures

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	0	0	0
26	Forty North Pty Limited	0	0	0
37	M Stewart	0	0	0
40	JM Devenish	0	0	0
70	DJ & A Coventry	0	0	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

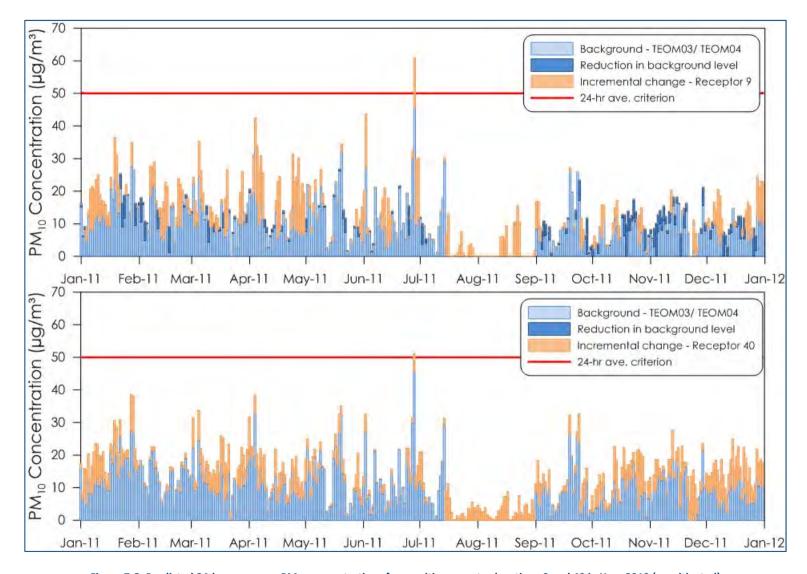


Figure 7-8: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2019 (unmitigated)

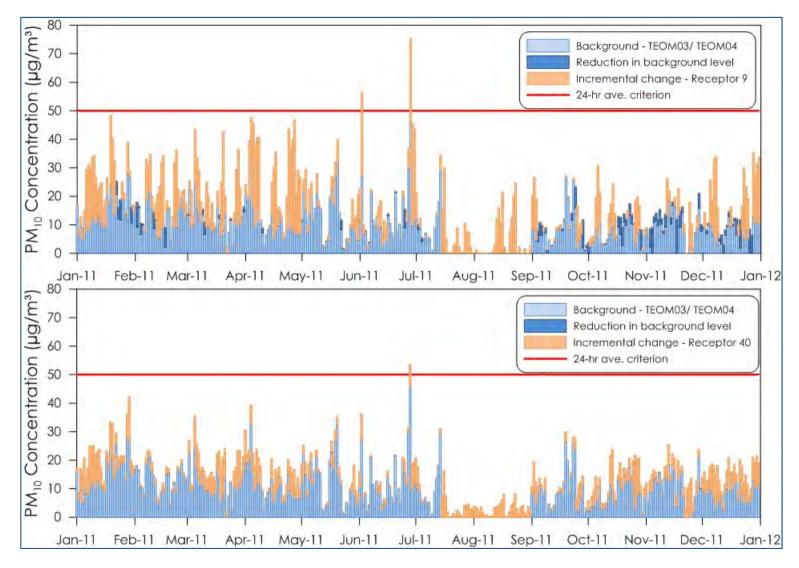


Figure 7-9: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2021 (unmitigated)

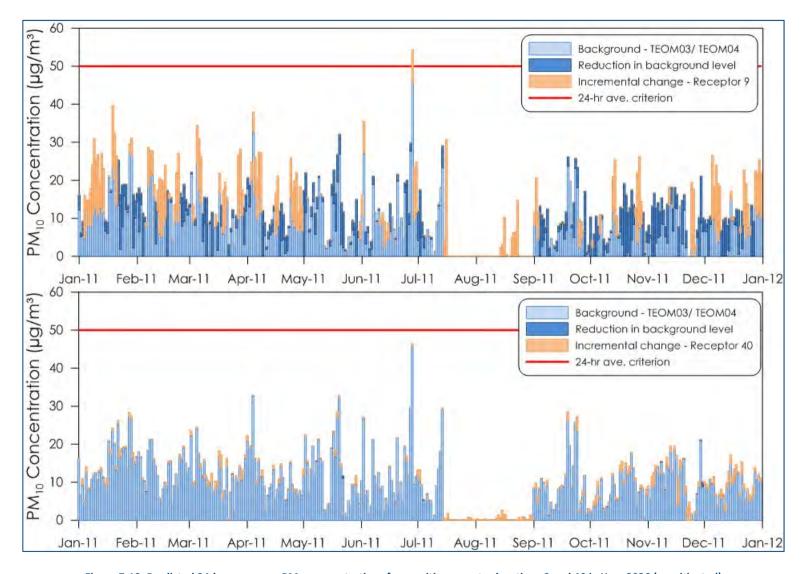


Figure 7-10: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2026 (unmitigated)

8 POTENTIAL COAL DUST EMISSIONS FROM TRAIN WAGONS

The Modification seeks to increase the number of trains transporting coal off-site from the Moolarben Coal Complex from an existing average of seven trains per day to eight trains and a maximum of nine trains per day to 11 trains. This activity has the potential to generate coal dust emissions from train wagons during the transportation and is assessed in this section.

8.1 Emission estimation

A study conducted by Katestone Environmental on behalf of Connell Hatch for Queensland Rail Limited (**Connell Hatch, 2008**) completed a review of a study by **Ferreira et al. (2003)** which focused on the release of coal dust from train wagons. The **Ferreira et al. (2003)** study conducted full-scale measurements of coal dust emissions from coal wagons over a 350km journey with an average train speed of between 55 and 60km/hr. The findings of this study determined that the total emission for an uncovered rail wagon was determined to be 9.6 grams (g) of TSP per km.

The Katestone Environmental study applied this emission factor with dispersion modelling and found that the resulting predicted concentration compared well with actual air quality monitoring conducted. This suggests that the findings of the **Ferreria et al. (2003)** study are realistic and therefore have been applied to estimate emissions for the Modification.

The Modification is proposing an increase in peak train movements from 9 to 11 per day. Each train would have an average capacity of approximately 10,500 tonnes of product coal and consist of approximately 91 wagons per train. This would result in an estimated emission rate of approximately 874g of TSP per km per train.

8.2 Modelling approach

The transportation model CAL3QHCR, developed by the US EPA, has been used to assess potential impacts from this source. CAL3QHCR was designed for use in dispersion modelling of road transport emissions, however given the similar linear nature of the potential train wagon emissions compared to road transport emissions it is considered to be a suitable model for this situation also.

To consider the range of varying land use between the Moolarben Coal Complex and the Port of Newcastle, and the varying orientation of the rail line relative to the prevailing winds, the dispersion model has been set up to assess theoretical sections of the rail line over a distance of 3km with two varying alignments (north/south and east/west) and two different land use categories. Dust level calculation points were applied at a spacing of 10 metres (m), perpendicular from the centre of the rail line source alignment out to a distance of 200m either side of the rail line.

8.3 Modelling predictions

Figure 8-1 presents the model predictions for each scenario. The modelling predictions indicate that at distances of 50m and beyond the rail track centreline, the maximum 24-hour average increase in TSP concentration due to the two additional peak rail movements for all scenarios would be approximately $0.7\mu g/m^3$. By assuming 40% of the TSP is comprised of PM₁₀, the predicted maximum 24-hour average PM₁₀ concentration would be approximately $0.3\mu g/m^3$.

For urban areas, the predicted maximum 24-hour average TSP level at 50m from the rail track centreline would be approximately $0.5\mu g/m^3$ with an equivalent PM_{10} level of $0.2\mu g/m^3$.

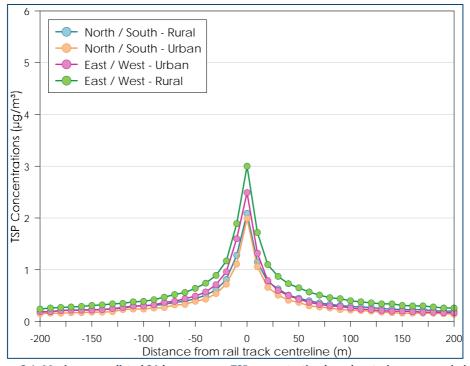


Figure 8-1: Maximum predicted 24-hour average TSP concentration based on train wagon emissions

8.4 Summary

The detailed study of dust emissions generated during rail transport of coal conducted by Katestone Environmental for Queensland Rail Limited (**Connell Hatch, 2008**) found that, based on monitoring and modelling of the emissions and impacts of coal train wagons, there appears to be a minimal risk of adverse impact on human health. The study found that concentrations of coal dust at the edge of the rail corridor are below levels known to cause adverse impacts on amenity.

A more recent review of a study conducted for the Australian Rail Track Corporation Ltd (**Ryan and Wand, 2014**) for trains travelling on the Hunter Valley network found no significant difference in the particulate matter measurements for passing freight and coal trains (loaded and unloaded).

Further analysis of the dataset, taking into account additional data suggests that a key mechanism for the increased particulate levels was due to the passing trains stirring up existing dust particles settled on the tracks and nearby ground (**Ryan & Malecki, 2015**).

This assessment is consistent with the findings of these studies in indicating that the potential for any adverse air quality impacts associated with coal dust generated during rail transport would be low and would not make any appreciable difference to air quality.

9 BLAST FUME ASSESSMENT

Air quality impacts from blast fume emissions are rare, but are possible when there are unforeseeable complications with a blast that causes high levels of NO_2 or dust emission, and when this occurs during unfavourable air dispersion conditions.

MCO employs best practice blast management measures to ensure that blasting activities are managed in a manner which would minimise the risk of impacts arising.

9.1 General outline of best practice blast management

The potential effects from blasting activities are generally managed by scheduling the blast to times when there would be a low risk of impact, for example, when winds blow away from receptors. These conditions are forecast using a predictive blast dust management system. Blast operators make the final decision to blast based on the available information, including available forecasts.

The decision of whether to initiate a blast at any given time will generally need to balance many potentially conflicting factors; for example water ingress will increase the risk of a high emissions event, thus waiting too long for ideal air dispersion conditions to occur may present an unacceptable level of risk and therefore the blast may be initiated under less than ideal weather conditions.

On the other hand, a dry blast with low scope for any degradation of the explosive over time or low potential to lead to any elevated emissions might be delayed if it appears that air dispersion conditions would soon improve significantly.

Occasionally safety concerns may also arise, and may require a blast to be detonated under less than ideal (environmental) conditions.

9.2 Management of potential air quality impacts from blasting

Air quality impacts of blast operations at the Moolarben Coal Complex will continue to be managed via the Blast Management Plan (BMP) (**Moolarben Coal Operations, 2015b**). The purpose of the BMP is to ensure that blasting operations comply with all relevant requirements particularly noise, overpressure, vibration, blast fume and dust effects.

The BMP requires a pre-blast environmental assessment to be conducted to guide operators on the suitability of various factors including the current weather conditions for blasting. The pre-blast environmental assessment takes into consideration an exclusion zone of 500m, meteorological factors such as wind speed and direction which can affect the scale of potential blast impacts at receptor locations, the design of the blast and notification to external stakeholders.

A predictive blast management system is also part of the blast management system at the Moolarben Coal Complex to aid with management of blasting operations. Such a system uses the weather conditions for each blast to predict the potential impact which may occur. The prediction is made on the basis of forecast weather data, allowing operators to schedule a blast to the time of least impact up to 48 hours in advance.

Overall, it is anticipated that with due care, potential blast impacts would be averted at the Moolarben Coal Complex. The BMP is regularly reviewed to ensure best practice blast management.

10 GREENHOUSE GAS ASSESSMENT

The Modification seeks to increase the amount of open cut ROM produced from 13Mtpa to 16Mtpa.

This increase in the annual coal extraction rate would result in an increase in the annual greenhouse gas emissions by increasing the intensity of mining activities on an annual basis, however maintaining the total resource mined is not expected to change the overall generation of greenhouse gas emissions over the life of the mine.

10.1 Greenhouse gas inventory

The National Greenhouse Accounts (NGA) Factors document published by the Commonwealth Department of the Environment and Energy (DEE) defines three scopes (Scopes 1, 2 and 3) for different emission categories based on whether the emissions generated are from "direct" or "indirect" sources.

Scope 1 emissions encompass the direct sources from a project defined as:

"...from sources within the boundary of an organisation as a result of that organisation's activities" (**DEE**, **2016a**).

Scope 2 and 3 emissions occur due to the indirect sources from a project as:

"...emissions generated in the wider economy as a consequence of an organisation's activities (particularly from its demand for goods and services), but which are physically produced by the activities of another organisation" (**DEE, 2016a**).

Scope 2 emissions are associated with the generation of purchased and consumed electricity, while Scope 3 emissions involve other indirect GHG emissions.

For the purpose of this assessment, emissions generated in Scopes 1 and 2 defined above provide a suitable approximation of the total GHG emissions generated from the Modification.

Scope 3 emissions can often result in a significant component of the total emissions inventory; however, these emissions are often not directly controlled by a project. These emissions are understood to be considered in the Scope 1 emissions from other various organisations related to the project. The primary contribution of the Scope 3 emissions from the Modification occurs from the transportation of the product coal and from the end use of the product coal.

The reported Moolarben Coal Complex GHG emissions for July 2012 to June 2015 are presented in **Table 10-1**. The relationship between ROM production and GHG emissions generated were examined for the three years to develop scaling factors used to estimate the Scope 1 and 2 emissions generated per tonne of ROM produced for the Modification.

Table 10-1: Annual greenhouse gas emissions for the Moolarben Coal Complex – Open Cut Operations

	2012 - 2013	2013 - 2014	2014 – 2015	Average
ROM production (tpa)	7,866,864	8,006,592	8,389,149	8,087,535
Scope 1 (t CO2-e/year)	63,160	68,712	75,748	69,207
Scope 2 (t CO2-e/year)	28,613	34,986	33,523	32,374
Total (Scope 1 + 2) (t CO ₂ -e)	91,773	103,698	109,271	-
Scaling factor – Scope 1	0.0080	0.0086	0.0090	0.0085
Scaling factor – Scope 2	0.0036	0.0044	0.0040	0.0040

10.2 Summary of greenhouse gas emissions

Table 10-2 summarises the estimated annual increase in CO_2 -e emissions due to the proposed increase in open cut ROM coal production of 3Mtpa Modification using the relationships in **Table 10-1**.

Table 10-2: Summary of increased annual CO₂-e emissions for the Modification

	Annual average
ROM production (tpa)	3,000,000
Scope 1 (t CO ₂ -e/year)	25,640
Scope 2 (t CO₂-e/year)	12,000
Total (Scope 1 + 2) (t CO ₂ -e)	37,640

11 SUMMARY AND CONCLUSIONS

This study has examined potential air quality and greenhouse gas impacts which may arise from the Moolarben Coal Complex incorporating the Modification for three indicative mine plan years representing year of maximum proposed rate of ROM coal production. Conservative emission estimation (e.g. using maximum mining rates) and dispersion modelling (e.g. not including the effect of rainfall) has been completed for this assessment.

This study has applied a similar methodology for assessing the potential air quality impacts associated with this Modification as has been applied for assessments of potential impacts for approved operations.

The results indicate that the Modification would be of a generally similar extent to the approved operations and that the proposed Modification would therefore not result in any significant change to what is already approved for the Moolarben Coal Complex.

No exceedance of criteria for PM2.5, PM10, TSP or dust deposition are predicted at any privately-owned receptor due to emissions from the Moolarben Coal Complex incorporating the Modification.

Short-term cumulative PM₁₀ dust impacts may potentially arise at a small number of privately-owned receptor locations. However with the continued application of the predictive/ reactive dust mitigation measures by MCO, it is predicted that short-term cumulative PM₁₀ dust would be adequately managed to acceptable levels.

Predicted levels for the other assessed dust metrics would be below the relevant criterion at privately-owned receptor locations. There are no likely air quality impacts associated with rail transport and blast fumes identified for the Modification.

12 REFERENCES

Bureau of Meteorology (2017)

Climate Averages Australia, Bureau of Meteorology website. Accessed June 2017.

http://www.bom.gov.au/climate/averages>

Connell Hatch (2008)

"Final Report, Environmental Evaluation of Fugitive Coal Dust Emissions from Coal Trains Goonyella, Blackwater and Moura Coal Rail Systems Queensland Rail Limited", March 2008.

DEE (2016a)

"National Greenhouse Accounts Factors Australian National Greenhouse Accounts", Department of the Environment and Energy [DEE], August 2016.

DEE (2016b)

"Quarterly Update of Australia's National Greenhouse Gas Inventory: June 2016", Department of the Environment and Energy, December 2016.

DEE (2017)

"State and Territory Greenhouse Gas Inventories 2015", Department of the Environment and Energy, May 2017.

Ferreira A. D., Viegas D. X. and Sousa A. C. M (2003)

"Full-scale measurements for evaluation of coal dust release from train wagons with two different shelter covers." Journal of Wind Engineering and Industrial Aerodynamics, 91, 1271-1283.

Katestone Environmental Pty Ltd (2010)

"NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining", Katestone Environmental Pty Ltd prepared for DECCW, 2010.

Moolarben Coal Operations (2015a)

"Annual Environmental Management Report 2013-2014", prepared by Moolarben Coal Operations Pty Ltd, March 2015.

Moolarben Coal Operations (2015b)

"Blast Management Plan", prepared by Moolarben Coal Operations Pty Ltd, June 2015.

Moolarben Coal Operations (2015c)

"Air Quality Management Plan", prepared by Moolarben Coal Operations Pty Ltd, August 2015.

National Pollutant Inventory (2012)

"Emission Estimation Technique Manual for Mining Version 3.1", National Pollutant Inventory, January 2012.

New South Wales Government (2014)

"Voluntary Land Acquisition and Mitigation Policy for State Significant Mining, Petroleum and Extractive Industry Developments". NSW Government, 15 December 2014.

NSW EPA (2017)

"Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales", January 2017.

PAEHolmes (2009)

"Air Quality Impact Assessment Ulan Coal – Continued Operations", prepared for Umwelt (Australia) Pty Limited on behalf of Ulan Coal Mines Limited by PAEHolmes, September 2009.

Ryan L. and Malecki A. (2015)

"Additional analysis of ARTC Data on Particulate Emissions in the Rail Corridor", NSW Environment Protection Authority. Prepared by accessUTS Pty Ltd, August 2015.

Ryan L. and Wand M. (2014)

"Re-analysis of ARTC Data on Particulate Emissions from Coal Trains", NSW Environment Protection Authority. Prepared by accessUTS Pty Ltd, February 2014.

SEPP (2001)

"Victorian Government Gazette - State Environmental Protection Policy (Air Quality Management)", No. S 240, Government of Victoria, Melbourne.

Todoroski Air Sciences (2013)

"Moolarben Coal Project Stage 1 Optimisation Modification Air Quality and Greenhouse Gas Assessment", prepared for EMGA Mitchell McLennan by Todoroski Air Sciences, May 2013.

Todoroski Air Sciences (2014)

"Air Quality Assessment Moolarben Coal Project OC4 South-West Modification", prepared by Todoroski Air Sciences, November 2014.

Todoroski Air Sciences (2015a)

"Air Quality Assessment Moolarben Coal Complex UG1 Optimisation Modification", prepared by Todoroski Air Sciences, May 2015.

Todoroski Air Sciences (2015b)

"Air Quality and Greenhouse Gas Assessment Wilpinjong Extension Project", prepared for Wilpinjong Coal Pty Ltd by Todoroski Air Sciences, November 2015.

United States Environmental Protection Authority (1985 and updates)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

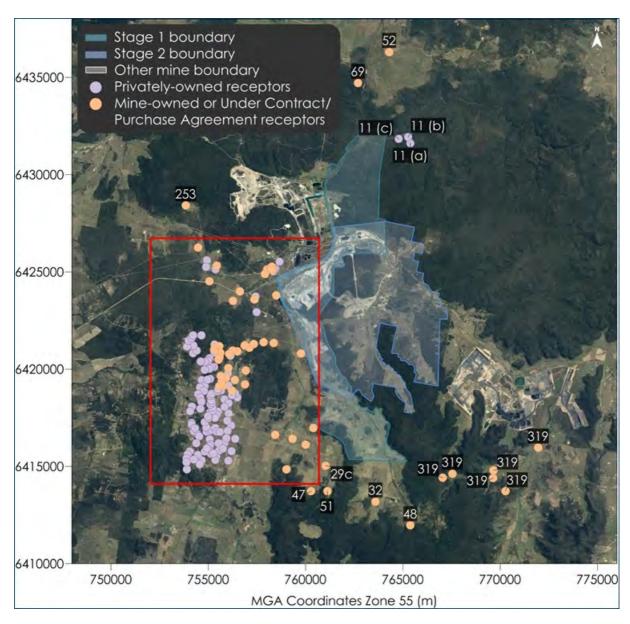


Figure A-1: Location of sensitive receptors assessed in this study

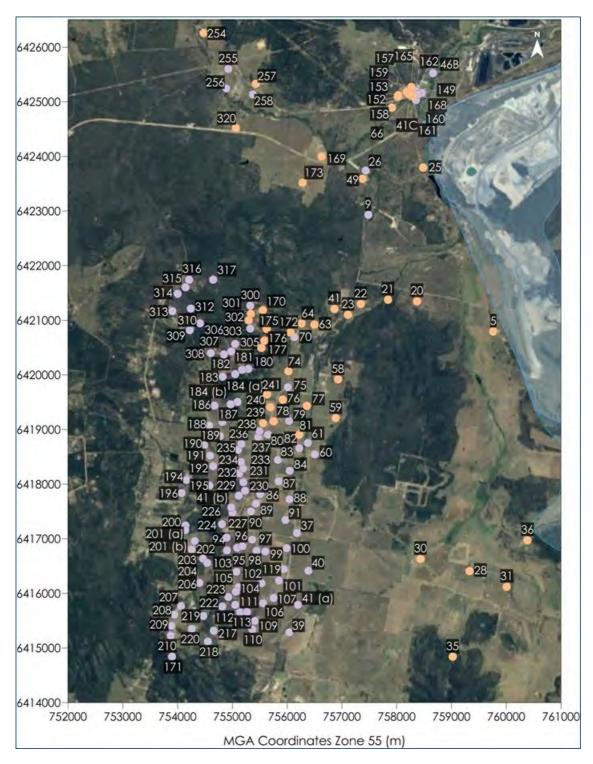


Figure A-2: Location of sensitive receptors assessed in this study - Insert

Table A-1: List of privately-owned sensitive receptors assessed in this study

ID	Туре	Easting	Northing	ID	Туре	Easting	Northing					
9	Commercial	757478	6422930	195	Private	754583	6417973					
26	Commercial	757430	6423741	196	Private	754072	6417840					
37	Private	756179	6417107	200	Private	754141	6417241					
39	Private	756038	6415288	202	Private	754258	6416804					
40	Private	756389	6416414	203	Private	754462	6416639					
60	Private	756500	6418546	204	Private	754537	6416557					
61	Private	756375	6418755	206	Private	754394	6416192					
66	Commercial	758310	6425130	207	Private	754057	6415768					
70	Private	756132	6420692	208	Private	753938	6415612					
75	Private	756012	6419777	209	Private	753338	6415407					
79	Private	756034	6419159	210	Private	753873	6415226					
80	Private	755649	6418908	217	Private	754659	6415319					
82	Private	756223	6418659	218	Private	754550	6415117					
83	Private	755832	6418444	219	Private	754468	6415587					
84	Private	756047	6418248	220	Private	754258	6415351					
86	Private	755506	6417818	222	Private	754813	6415761					
87	Private	755841	6418051	223	Private	754921	6415935					
88	Private	756043	6417724	224	Private	754895	6417021					
89	Private	755431	6417645	226	Private	754812	6417270					
90	Private	755337	6417501	227	Private	755000	6417482					
91	Private	755969	6417348	229	Private	755115	6417791					
94	Private	754900	6416785	230	Private	755229	6417879					
95	Private	755085	6416834	231	Private	755200	6418034					
96	Private	755183	6416867	232	Private	755121	6418197					
97	Private	755364	6416985	233	Private	755196	6418290					
98	Private	755440	6416783	234	Private	755157	6418405					
99	Private	755603	6416770	235	Private	755107	6418631					
100	Private	755992	6416832	236	Private	755165	6418738					
101	Private	755850	6416237	237	Private	755468	6418862					
102	Private	755530	6416189	238	Private	755497	6418969					
103	Private	755072	6416399	255	Private	754922	6425602					
104	Private	755112	6416116	256	Private	754887	6425251					
105	Private	755061	6416033	258	Private	755375	6425132					
106	Private	755558	6415823	300	Private	755327	6421268					
107		755752		303								
	Private		6415919		Private	755327	6420850					
109	Private	755410	6415494	305	Private	755052	6420566					
110	Private	755361	6415339	306	Private	754978	6420431					
111	Private	755052	6415789	307	Private	754843	6420373					
112	Private	755138	6415655	308	Private	754605	6420402					
113	Private	755269	6415661	309	Private	754219	6420817					
119	Private	755937	6416447	310	Private	754407	6420948					
149	Commercial	758457	6425165	312	Private	754239	6421215					
160	School	758350	6425029	313	Private	753906	6421166					
162	Commercial	758342	6425199	314	Private	753997	6421486					
168	Church	758386	6425136	315	Private	754141	6421605					
171	Private	753898	6414840	316	Private	754210	6421744					
180	Private	755292	6420111	317	Private	754646	6421744					
181	Private	755178	6420092	11 (a)	Commercial	765376	6431622					
182	Private	755049	6420016			765265	6431931					
				11 (b)	Private							
183	Private	754822	6419969	11 (c)	Commercial	764784	6431839					
186	Private	754674	6419437	184 (a)	Private	755093	6419504					
187	Private	754816	6419137	184 (b)	Private	754967	6419464					
188	Private	754577	6419073	201 (a)	Private	754138	6417158					
189	Private	754772	6418881	201 (b)	Private	754311	6416962					
190	Private	754488	6418711	41 (a)	Private	756194	6415791					
191	Private	754592	6418520	41 (b)	Private	754978	6417572					
192	Private	754649	6418328	46B	Commercial	758663	6425526					
194	Private	754160	6418080									
				<u> </u>		1						

Table A-2: List of mine-owned sensitive receptors assessed in this study

Table A-2: List of mine-owned sensitive receptors assessed in this study ID Type Easting Northing ID Type Easting North												
							Northing					
5	Mine	759764	6420796	158	Mine	757911	6424895					
20	Mine	758370	6421350	159	Mine	758237	6425137					
21	Mine	757840	6421380	161	Mine	758298	6425100					
22	Mine	757342	6421298	165	Mine	758268	6425275					
23	Mine	757110	6421102	169	Mine	756630	6424000					
25	Mine	758484	6423794	170	Mine	755557	6421185					
28	Mine	759330	6416410	172	Mine	756058	6420779					
30	Mine	758435	6416631	173	Mine	756280	6423520					
31	Mine	760008	6416123	175	Mine	755624	6420844					
32	Mine	763590	6413194	176	Mine	755585	6420625					
35	Mine	759021	6414840	177	Mine	755530	6420496					
36	Mine	760388	6416975	239	Mine	755558	6419118					
41	Mine	756863	6421212	240	Mine	755694	6419408					
47	Mine	760293	6413734	241	Mine	755631	6419645					
48	Mine	765380	6411970	253	Mine	753840	6428415					
49	Mine	757370	6423590	254	Mine	754474	6426260					
51	Mine	761130	6413720	257	Mine	755429	6425331					
52	Mine	764290	6436310	301	Mine	755336	6421121					
58	Mine	756926	6419919	302	Mine	755299	6420997					
59	Mine	756886	6419210	319	Mine	767049	6414413					
	MCO Pty Ltd -											
63	Under Contract/	756497	6420923	319	Mine	767545	6414629					
	Purchase Agreement											
64	Mine	756262	6420946	319	Mine	769659	6414795					
69	Mine	762690	6434710	319	Mine	769645	6414405					
74	Mine	756021	6420067	319	Mine	770276	6413737					
76	Mine	755920	6419546	319	Mine	771960	6415964					
77	Mine	756357	6419434	320	Mine	755059	6424522					
78	Mine	755750	6419149	41C	Mine	758241	6425152					
81	Mine	756220	6418906	2 9c	Mine	761033.5	6415038					
152	Mine	758019	6425090									
153	Mine	758029	6425124									
157	Mine	758183	6425184									

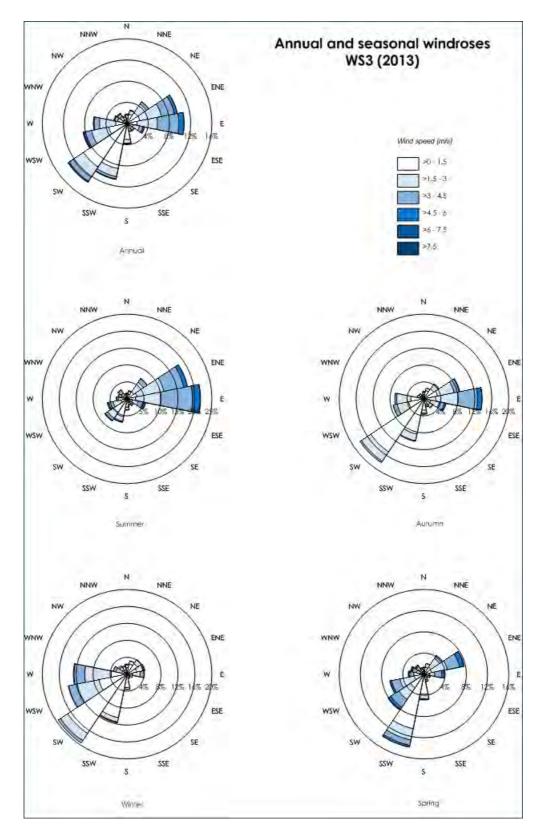


Figure B-1: Annual and seasonal windroses for WS3 (2013)

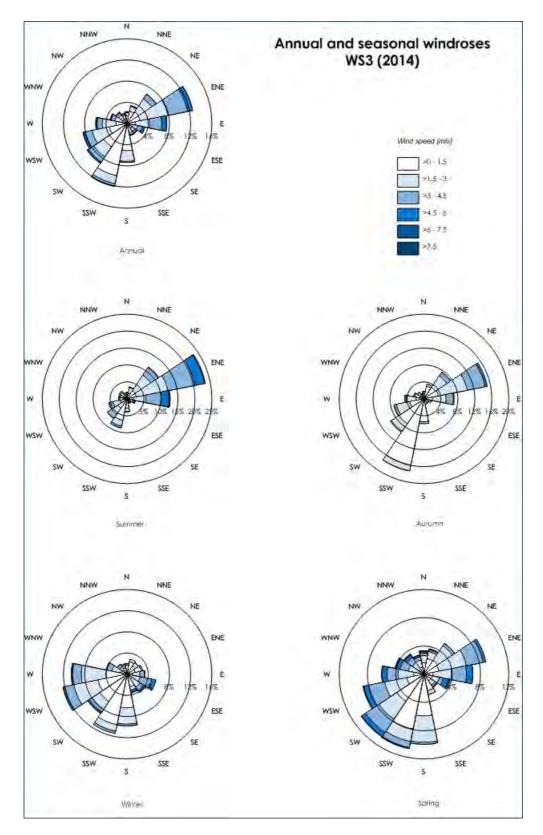


Figure B-2: Annual and seasonal windroses for WS3 (2014)

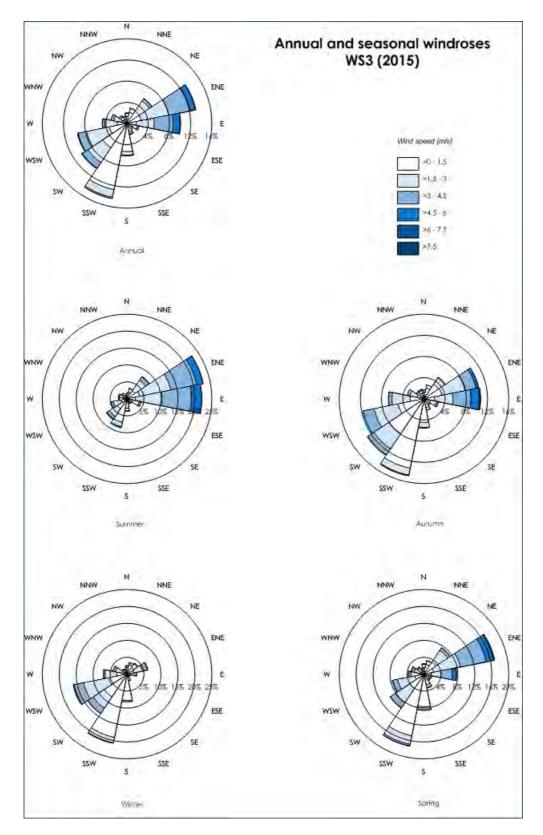


Figure B-3: Annual and seasonal windroses for WS3 (2015)

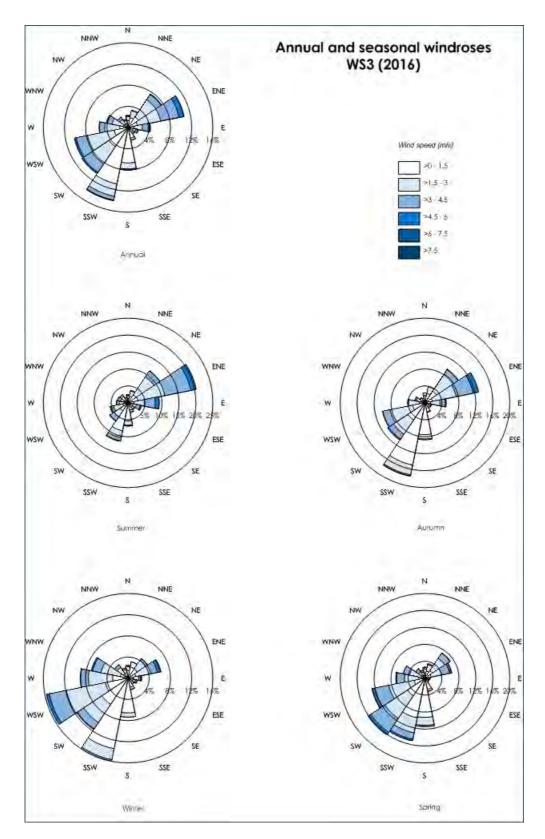
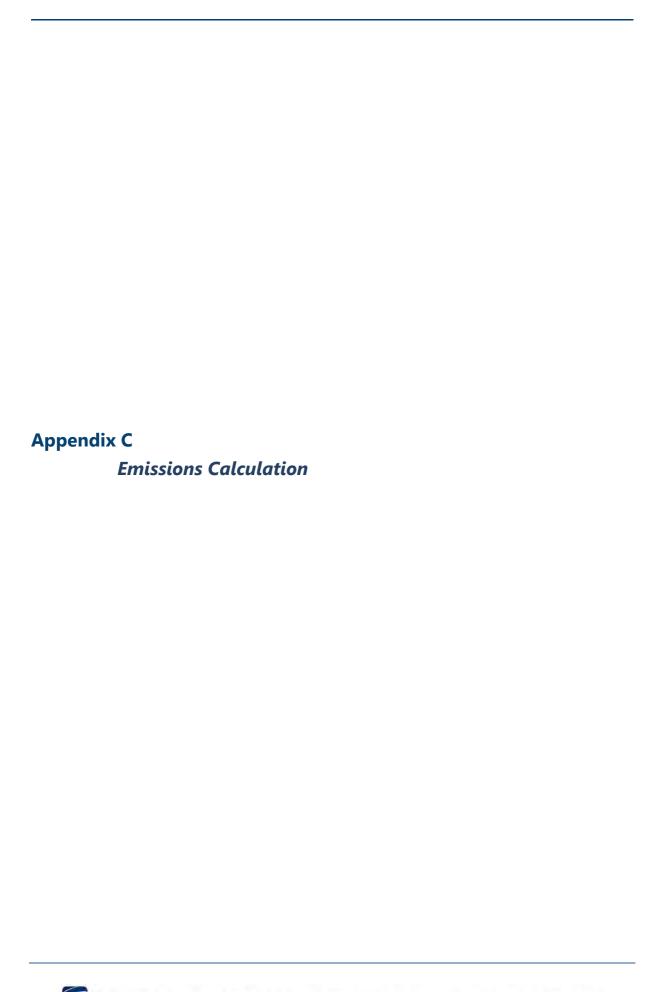



Figure B-4: Annual and seasonal windroses for WS3 (2016)

Emission Calculation

The mining schedule and mine plan designs provided by MCO have been combined with emissions factor equations that relate to the quantity of dust emitted from particular activities based on intensity, the prevailing meteorological conditions, and composition of the material being handled.

Emission factors and associated controls have been sourced from the US EPA AP42 Emission Factors (**US EPA, 1985 and Updates**), the National Pollutant Inventory document *Emission Estimation Technique Manual for Mining, Version 3.1* (**NPI, 2012**) and the NSW EPA document, *NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining*, prepared by Katestone Environmental (**Katestone Environmental, 2010**).

The emission factor equations used for each dust generating activity are outlined in **Table C-1** below. Detailed emission inventories for each scenario are presented in **Table C-2** to **Table C-4**.

Control factors include the following:

- → Hauling on unpaved surfaces 90% control for watering of trafficked areas. Note the control factor is only applied to the mechanically generated emissions and not the contributions from the diesel exhaust emissions.
- → Drilling 70% control for use of dust suppression.
- Unloading ROM to hopper at CHPP 50% control for fogging sprays.
- Conveyor 70% control for enclosed conveyors.
- → Dozer on coal 50% for keeping travel routes moist.
- → Inactive areas 50% for watering of exposed surface and surface crusting.
- → Partial rehabilitation 70% for vegetative ground cover.
- Coal stockpiles 50% for watering stockpile surface.

Table C-1: Emission factor equations

Activity		Emission factor equation	
Activity	TSP	PM ₁₀	PM _{2.5}
Drilling (overburden)	EF = 0.59 kg/hole	0.52 × <i>TSP</i>	0.03 × TSP
Drilling (coal)	EF = 0.1 kg/hole	0.52 × TSP	0.03 × TSP
Blasting (overburden/ coal)	$EF = 0.00022 \times A^{1.5} kg/blast$	0.52 × TSP	0.03 × TSP
Loading / emplacing overburden & loading product coal to stockpile & conveyor transfer	$EF = 0.74 \times 0.0016$ $\times \left(\frac{U}{2.2}\right)^{1.3} / \frac{M^{1.4}}{2} kg$ /tonne	$EF = 0.35 \times 0.0016 \times \left(\frac{U^{1.3}}{2.2}/\frac{M^{1.4}}{2}\right) kg/$ tonne	$EF = 0.053 \times 0.0016$ $\times \left(\frac{U}{2.2}^{1.3} / \frac{M^{1.4}}{2}\right) kg/tonne$
Hauling on unsealed surfaces	$EF = \left(\frac{0.4536}{1.6093}\right) \times 4.9 \times (s/12)^{0.7} \times (1.1023 \times M/3)^{0.45} kg$ $/VKT$	$EF = \left(\frac{0.4536}{1.6093}\right) \times 1.5 \times (s/12)^{0.9} \times (1.1023 \times M/3)^{0.45} kg/VKT$	$EF = \left(\frac{0.4536}{1.6093}\right) \times 0.15 \times (s/12)^{0.9} \times (1.1023 \times M/3)^{0.45} kg$ $/VKT$
Dozers on overburden	$EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} kg/hour$	$EF = 0.45 \times \frac{s^{1.5}}{M^{1.4}} \times 0.75 kg/hour$	$EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} \times 0.105 kg/hour$
Dozers on coal	$EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} kg/hour$ $EF = 35.6 \times \frac{s^{1.2}}{M^{1.4}} kg/hour$	$EF = 0.45 \times \frac{s^{1.5}}{M^{1.4}} \times 0.75 kg/hour$ $EF = 8.44 \times \frac{s^{1.5}}{M^{1.4}} \times 0.75 kg/hour$	$EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} \times 0.105 kg/hour$ $EF = 35.6 \times \frac{s^{1.2}}{M^{1.4}} \times 0.022 kg/hour$ $EF = \frac{0.58}{M^{1.2}} \times 0.019 kg/tonne$
Loading / emplacing coal	$EF = \frac{0.58}{M^{1.2}} kg/tonne$	$EF = \frac{0.0596}{M^{0.9}} \times 0.75 kg/tonne$	$EF = \frac{0.58}{M^{1.2}} \times 0.019 kg/tonne$
Sizing coal	EF = 0.0027 kg/tonne	EF = 0.0012 kg/tonne	$0.047 \times TSP$
Wind erosion on exposed areas, stockpiles & conveyors	EF = 850 kg/ha/year	$0.5 \times TSP$	0.075 × TSP
Grading roads	$EF = 0.0034 \times sp^{2.5} kg/VKT$	$EF = 0.0056 \times sp^{2.0} \times 0.6 kg/VKT$	$EF = 0.0034 \times sp^{2.0} \times 0.031 kg/VKT$

EF = emission factor, A = area of blast (m^2), U = wind speed (m/s), M = moisture content (%), s = silt content (%), VKT = vehicle kilometres travelled (km), p = number of days per year when rainfall is greater than 0.25mm (days), f = percentage of time that wind speed is greater than 5.4m/s (%), sp = speed of grader (km/h).

Table C-2: Emission inventory – Year 2019

						D.C C _			erreor y	- rear 2													
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - PM25	Units	Variable 1	Units	Variable 2	Units	Varia ble 3 - TSP	ble 3	able 3 - PM2	Units	Variab le 4	Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden																							
OB - Stripping Topsoil - OC1	1,356	530	64	97	hours/year	14.0			kg/h	450	total hours/year	г											
OB - Stripping Topsoil - OC2	1,472	576	69	105	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	г											
OB - Stripping Topsoil - OC3	1,419	555	67	101	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	г											
OB - Stripping Topsoil - OC4	2,053	803	96	147	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	г											
OB - Drilling - OC1	1,304	678	39	7,368	holes/year	0.59	0.31	0.02	kg/hole	0.00074	holes/bcm											70	% Contro
OB - Drilling - OC2	1,415	736	42		holes/year	0.59			kg/hole		holes/bcm												% Contro
OB - Drilling - OC3	1,364	709	41		holes/year	0.59			kg/hole		holes/bcm												% Contro
OB - Drilling - OC4	3,291	1,711	99		holes/year	0.59			kg/hole		holes/bcm											70	% Contro
OB - Blasting - OC1	11,953	6,216	359		blasts/year	572			kg/blast		Area of blast in												
OB - Blasting - OC2	12,972	6,745	389		blasts/year	572			kg/blast		Area of blast in												
OB - Blasting - OC3	12,502	6,501	375		blasts/year	572			kg/blast		Area of blast in												
OB - Blasting - OC4	30,157	15,682	905		blasts/year	572			kg/blast		Area of blast in												
OB - Excavator loading OB to haul truck - OC1	23,153	10,951	1,658		tonnes/year	0.001			kg/t	0.893	(WS/2.2) ^{1.3} in m		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC2	25,126	11,884	1,800		tonnes/year	0.001					(WS/2.2) ^{1.3} in m		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC3	24,215	11,453	1,734		tonnes/year	0.001	0.00050				(WS/2.2) ^{1.3} in m		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC4	35,048	16,577	2,510		tonnes/year	0.001	0.00050				(WS/2.2) ^{1.3} in m		MC in %	2.2			tonnes/BCM		% OB excava				
OB - Excavator rehandle - OC4	1,168	553	84	1,105,378		0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %	2.2			tonnes/BCM		% OB rehand				
OB - Hauling to dump - OC1 (OC1 void)	169,248	43,005	5,466		tonnes/year	0.153	0.038				tonnes/load		km/return t	r 5.3			kg/VKT		% silt conten				% Contro
OB - Hauling to dump - OC1 (OC1 dump)	82,586	21,500	3,315		tonnes/year	0.074		0.002			tonnes/load		km/return t	r 5.3			kg/VKT		% silt conten		Ave GMV		% Contro
OB - Hauling to dump - OC2	179,250	46,666	7,196		tonnes/year	0.074		0.002			tonnes/load		km/return t	r 5.3	1.3		kg/VKT		% silt conten	279	Ave GMV		% Contro
OB - Hauling to dump - OC3	104,773	28,106	5,248		tonnes/year	0.045					tonnes/load		km/return t	r 5.3			kg/VKT		% silt conten		Ave GMV		% Contro
OB - Hauling to dump - OC4 (930 E)	64,424	18,474	4,726		tonnes/year	0.037					tonnes/load		km/return t	r 5.8			kg/VKT		% silt conten				% Contro
OB - Hauling to dump - OC4 (830 E)	149,614	38,651	5,629	16,580,665		0.089					tonnes/load		km/return t	r 5.3	1.3	0.1	kg/VKT	4.2	% silt conten	279	Ave GMV	90	% Contro
OB - Emplacing at dump - OC1 (OC1 void)	11,576	5,475	829		tonnes/year	0.001	0.00050			0.893	(WS/2.2) ^{1.3} in m		MC in %										
OB - Emplacing at dump - OC1 (OC1 dump)	11,576	5,475	829		tonnes/year	0.001	0.00050		kg/t	0.893	(WS/2.2) ^{1.3} in m	/ 2	MC in %										
OB - Emplacing at dump - OC2	25,126	11,884	1,800		tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %										
OB - Emplacing at dump - OC3	24,215	11,453	1,734	22,911,843		0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %										
OB - Emplacing at dump - OC4	35,048	16,577	2,510	33,161,330	tonnes/year	0.001					(WS/2.2) ^{1.3} in m		MC in %										
OB - Dozers on OB (dump and pit) - OC1	-	-	-	-	hours/year	16.7			kg/h		SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC2	309,620	74,822	32,510		hours/year	16.7			kg/h		SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC3	155,689	37,623	16,347		hours/year	16.7			kg/h		SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC4	681,262	164,631	71,533	40,708	hours/year	16.7	4.0	1.8	kg/h	10	SC in %	2	MC in %										
Coal	39	20	1	4 000		0.10	0.05	- 0.00		0.004	Holes/tonne RO											70	% Contro
CL - Drilling - OC1 CL - Drilling - OC2	106	55 55	3		holes/year holes/year	0.10			kg/hole ka/hole		Holes/tonne RO			_									% Contro % Contro
CL - Drilling - OC2 CL - Drilling - OC3	92	48	3		holes/year	0.10			kg/noie ka/hole		Holes/tonne RO			+	-								% Contro
CL - Drilling - OC3 CL - Drilling - OC4	243	126	7		holes/year	0.10			kg/noie ka/hole		Holes/tonne RO			+	-								% Contro
CL - Blasting - OC1	3,234	1.681	97		blasts / year				kg/hole kg/blast		Area of blast in		LI4- /4	- 0014	-							70	% CONTRO
CL - Blasting - OC1 CL - Blasting - OC2	3,234 8,841	4.597	265		blasts / year	859			kg/blast kg/blast		Area of blast in												
CL - Blasting - OC3	7,625	3,965	229		blasts / year				kg/blast		Area of blast in												
CL - Blasting - OC4	20,168	10.487	605		blasts / year				kg/blast		Area of blast in				_								$\overline{}$
CL - Dozers ripping/pushing/clean-up - OC1	7,756	1,830	171		hours/year	18.2			kg/biast kg/h		SC in %		MC in %	IC KOW	—							50	% Contro
CL - Dozers ripping/pushing/clean-up - OC2	20,573	4,853	453		hours/year	18.2			kg/h	5	SC in %		MC in %		1								% Contro
CL - Dozers ripping/pushing/clean-up - OC3	17,742	4,185	390		hours/year	18.2			kg/h	5	SC in %		MC in %		1								% Contro
CL - Dozers ripping/pushing/clean-up - OC4	48,400	11,417	1,065		hours/year	18.2			kg/h		SC in %		MC in %		1								% Contro
CL - Loading ROM coal to haul truck - OC1	68,160	9,576	1,295		tonnes/year	0.053					MC in %	7.4	IVIC III 70		1							30	70 COIILIO
CL - Loading ROM coal to haul truck - OC2	186,352	26,181	3,541	3,548,002		0.053	0.007				MC in %												
CL - Loading ROM coal to haul truck - OC3	160,734	22,582	3,054		tonnes/year	0.053					MC in %												
CL - Loading ROM coal to haul truck - OC4	425,123	59,726	8,077		tonnes/year	0.053					MC in %												
CL - Hauling ROM to hopper - OC1	28,508	7.331	1.030	1,297,709	tonnes/year	0.033	0.054				tonnes/load	8.0	km/return t	r 4.9	1.2	0.1	kg/VKT	4.2	% silt conten	234	Ave GMV	90	% Contro
CL - Hauling ROM to hopper - OC2	154,950	39,153	4,728	3,548,002	tonnes/year	0.434					tonnes/load		km/return t	r 4.9			kg/VKT		% silt conten		Ave GMV		% Contro
CL - Hauling ROM to hopper - OC3	198,410	49.841	5,685		tonnes/year	0.646					tonnes/load		km/return t	r 4.9			kg/VKT		% silt conten				% Contro
CL - Hauling ROM to hopper - OC4	100,949	26.652	4.519	8.094.029		0.122	0.030				tonnes/load		km/return t	г 4.9			kg/VKT		% silt conten		Ave GMV		% Contro
CL - Unload to hooper or stockpile (OC1, OC2, OC3)	207.623	29,169	3,945		tonnes/year	0.053					MC in %	4.5		4.7	2	0.1		7.2	In comen	204			% Contro
CL - Unload to hopper or stockpile (OC4)	212,562	29,863	4.039		tonnes/year	0.053	0.007				MC in %												% Contro
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper	110,621	15.541	2,102		tonnes/year	0.053					MC in %											55	0011110
CL - Rehandling - OC4 - at hopper	113,253	15,911	2,152		tonnes/year	0.053	0.007				MC in %			1									
oc - Kenandilly - OC4 - at Hopper	113,233	19,711	2,152	2,100,249	torines/year	0.053	0.00	0.001	Ng/t	7.4	IVIC III 70					_		\vdash		-			

ACTIVITY	TSP	PM10	PM25	Intensity	Units	Emission Factor -	Emission Factor -	Emission Factor -	Units	Variable	Units	Variable 2	Units	Varia ble 3	i bie 3 ·	able 3 -	Units	Variab	Units	Varia		aria Units
ACIIVIII	emission	emission	emission	Intensity	Onits	TSP	PM10	PM25	Units	1	Offics	Valiable 2	Units	- TSP	PM1 0	PM2	Units	le 4	Units	ble 5	ы	le 6
Open Cut														_	U	-						
CHPP - Conveying to Sizing Station (OC1+OC2+OC3)	158	62	7	0.2	ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours											70 % Contro
CHPP - Transfer to Sizing Station (OC4)	1.370	648	98		tonnes/vear	0.000	0.00008		ka/t		(WS/2.2) ^{1.3} in m	7.4	MC in %									
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	43,200	19,200	2.030		tonnes/year	0.0027	0.00120		kg/t		W 5/2.2/ III II											_
CHPP - Conveying to CHPP (OC)	39	15	2,000	0.04		0.40	0.2		kg/ha/hour	8.760	hours											70 % Contro
CHPP - Washing (OC)	-	-	-		tonnes/vear					0,												
CHPP - Conveying to CHPP Product Stockpile (OC)	208	81	10	0.2		0.40	0.2	0.0	kg/ha/hour	8 760	hours			1								70 % Contro
CHPP - Unloading to CHPP Product Stockpile (OC)	1.393	659	100		tonnes/year	0.000	0.00005		ka/t		(WS/2.2) ^{1.3} in m	. / 10	MC in %	_								70 70 001111
CHPP - Reclaim and Conveying to TLO (3 transfer poin	4,179	1.976	299		tonnes/year	0.000	0.00005				(WS/2.2) In II		MC in %	+								\rightarrow
Underground	4,177	1,770	211	12,545,775	tornie 37 year	0.000	0.00003	0.00001	Kg/t	0.073	(W 5/2.2) III II	//	IVIC III 70	_								
CHPP - Conveyor transfer point at UG portal entrance	310	121	15	0.3	ha	0.40	0.2	0.0	kg/ha/hour	8 760	hours			_								70 % Contro
CHPP - Conveyor to UG1 pit top	386	151	18	0.4		0.40	0.2															70 % Contro
CHPP - Unload to ROM stockpile	1.024	484	73	6.050.000		0.000	0.00008				(WS/2.2) ^{1.3} in n	. 7	MC in %	_				_		_		70 % COIIII
CHPP - Unload to ROW Stockpile CHPP - Transfer to sizing station (at product coal stock	1,024	484	73	6.050,000		0.000	0.00008		kg/t ka/t				MC in %	+	-		-	_		_		-
	1,024	484	73	6.050,000		0.000	0.00008				(WS/2.2) ^{1.3} in n		MC in %	+	_							-
CHPP - Unload to product stockpile									kg/t		(WS/2.2) ^{1.3} in n			+	-			1		-		-
CHPP - Reclaim and conveyor to TLO (3 transfer points	3,072	1,453	220	6,050,000	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in n	1.4	MC in %									
Dozers																						
CHPP - Dozer pushing ROM coal at UG1 pit top	27,746	6,545	610		hours/year	18.2	4.3		kg/h		SC in %		MC in %	_								50 % Contro
CHPP - Dozer pushing ROM coal (bypass) at product s	37,517	8,588	825		hours/year	12.3	2.8		kg/h		SC in %		MC in %									50 % Contro
CHPP - Dozer pushing Product coal	59,526	12,743	1,310	12,642	hours/year	9.4	2.0	0.2	kg/h	4	SC in %	10	MC in %									50 % Contro
Rejects																						
CHPP - Conveying rejects from CHPP to loadout	183	72	9	0.17		0.40	0.2		kg/ha/hour		hours											70 % Contro
CHPP - Loading rejects	145	69	10	3,456,006	tonnes/year	0.000	0.00002	0.00000			(WS/2.2) ^{1.3} in n		MC in %									
CHPP - Hauling rejects	126,674	32,118	4,003	3,456,006		0.364	0.090	0.009			tonnes/load		km/return t	r 4.9	1.2	0.1	kg/VKT	4.2	% silt conter	234	Ave GMV	90 % Contro
CHPP - Unloading rejects	145	69	10	3,456,006	tonnes/year	0.000	0.00002	0.00000	kg/t	0.893	(WS/2.2)1.3 in n	1/9 20	MC in %									
Wind Erosion																						
OC1 - Active mining area (pit, active dumping area) (O	8,713	4,356	653	10	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											
OC1 - Active mining area (pit, active dumping area) (O	51,502	25,751	3,863	61	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											
OC1 - Inactive area (no rehabilitation) (OC1 north)	4,977	2,488	373	11.71	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											50 % Contro
OC1 - Inactive area (no rehabilitation) (OC1 south)	5,576	2,788	418	13.12	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											50 % Contro
OC1 - Partially rehabilitated (e.g. stable and seeded)	12,123	6,061	909	47.54	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											70 % Contro
OC1 - Hard Stand Areas (Workshops, roads, conveyor	105,239	52,619	7,893	123.81	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											
OC2 - Active mining area (pit, active dumping area)	51,170	25,585	3,838	60.20	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											
OC2 - Inactive area (no rehabilitation)	1,216	608	91	2.86	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											50 % Contro
OC2 - Partially rehabilitated (e.g. stable and seeded)	21,224	10,612	1,592	83.23	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											70 % Contro
OC2 - Hard Stand Areas (Workshops, roads, conveyor	17.850	8,925	1.339	21.00	ha	0.10	0.05	0.007	kg/ha/hour	8.760	hours											
OC3 - Active mining area (pit, active dumping area)	120.318	60.159	9.024	141.55	ha	0.10	0.05	0.007	kg/ha/hour	8.760												
OC3 - Inactive area (no rehabilitation)	-	-	-	-	ha	0.10	0.05	0.007	kg/ha/hour	8.760	hours											50 % Contro
OC3 - Partially rehabilitated (e.g. stable and seeded)	16.111	8.055	1.208	63.18	ha	0.10	0.05	0.007	kg/ha/hour	8.760	hours											70 % Contro
OC3 - Hard Stand Areas (Workshops, roads, conveyor	31,969	15,984	2,398	37.61		0.10	0.05		kg/ha/hour		hours											
OC4 - Active mining area (pit, active dumping area)	168,904	84,452	12,668	198.71		0.10	0.05	0.007	kg/ha/hour					1								_
OC4 - Inactive area (no rehabilitation)	16,970	8,485	1.273	39.93		0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
OC4 - Partially rehabilitated (e.g. stable and seeded)	18,202	9.101	1,365	71.38		0.10	0.05	0.007	kg/ha/hour		hours			+								70 % Contro
OC4 - Hard Stand Areas (Workshops, roads, conveyor	28,968	14,484	2.173	34.08		0.10	0.05	0.007	kg/ha/hour	8,760			1									7.0 7.0 COIIII
Stockpile - ROM coal stockpile (OC1)	3.107	1,553	233	7.31		0.10	0.05	0.007	kg/ha/hour		hours		1									50 % Contro
Stockpile - ROM coal stockpile (UC)	769	385	58	1.81		0.10	0.05		kg/ha/hour	8,760		+	+	+	_					_		50 % Contro
Stockpile - ROM coal stockpile (OC3)	1.471	735	110	3.46		0.10	0.05		kg/ha/hour		hours	+	+	_								50 % Contro
Stockpile - ROM coal stockpile (OC3) Stockpile - ROM coal stockpile (OC4)	3,336	1.668	250	7.85		0.10	0.05	0.007	kg/ha/hour	8,760				+	1	-				_		50 % Contro
Stockpile - ROM coal Stockpile (OC4) Stockpile - Bypass Coal Stockpile						0.10	0.05	0.007	kg/ha/hour	8,760		_	1	+	_							50 % Contro
		-	179										1	+	-	-				_		
Stockpile - Product Coal Stockpile	2,384	1,192	179	5.61	na	0.10	0.05	0.007	kg/ha/hour	8,760	hours		-	+		-		+		_		50 % Contro
										_				1		-		_		_		-
Grading roads	141,796	49,543	4,396	230,388	km	0.62	0.22	0.02	kg/VKT	8	speed of grade	rs 0.6575	hours utilis	ed/tota	l hours	_		_		_		$-\!\!\!\!-\!\!\!\!\!-$
Total TSP emissions (kg/yr)	5,439,254	1,473,606	283,560									1			1					1		

Note: ha = hectares, SC=silt content, kg/h = kilograms/hour, WS = wind speed, MC = moisture content.

Table C-3: Emission inventory – Year 2021

						i able C	-3. EIIII	331011 111	iveii	itory –	- Year Zuzi												
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - PM25	Units	Variable 1	Units	Variable 2	Units	Variab le 3 - TSP	ble 3	Varia ble 3 PM25	· Units	Varia ble 4	Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden																							
OB - Stripping Topsoil - OC1	1,290	504	61	92	hours/year	14.0	5.5	0.7	ka/h	450	total hours/year												
OB - Stripping Topsoil - OC2	-	-	-	-	hours/year	14.0		0.7			total hours/year												
OB - Stripping Topsoil - OC3	1.470	575	69	105	hours/year	14.0	5.5	0.7			total hours/year												
OB - Stripping Topsoil - OC4	3.540	1.384	166		hours/year	14.0	5.5	0.7	ka/h		total hours/year												
OB - Drilling - OC1	1.155	600	35		holes/year	0.59		0.02	ka/hole	0.00074	holes/bcm											70	% Control
OB - Drilling - OC2	_	-	-	-	holes/year	0.59		0.02	ka/hole	0.00074	holes/bcm											70	% Control
OB - Drilling - OC3	1,316	684	39	7.433	holes/year	0.59	0.31	0.02	ka/hole	0.00074	holes/bcm											70	% Control
OB - Drilling - OC4	4,351	2,262			holes/year	0.59					holes/bcm												% Control
OB - Blasting - OC1	10,582	5,503	317		blasts/year	572			kq/blas		Area of blast in n	0.0000021	blasts/bcm										
OB - Blasting - OC2	-	-	-	-	blasts/year	572	297.2	17.1	kq/blas	18,900	Area of blast in n	0.0000021	blasts/bcm										
OB - Blasting - OC3	12,057	6,270	362	21	blasts/year	572	297.2	17.1	kg/blas	18,900	Area of blast in r	0.0000021	blasts/bcm										
OB - Blasting - OC4	39.874	20.734			blasts/vear	572		17.1		18,900	Area of blast in n	0.0000021	blasts/bcm										
OB - Excavator loading OB to haul truck - OC1	20,496	9,694	1,468	19.393.058	tonnes/year	0.001	0.00050	0.00008	ka/t	0.893	(WS/2.2) ^{1.3} in m/	, 2	MC in %	2.2)		tonnes/BCM						
OB - Excavator loading OB to haul truck - OC2	-	-	-	-	tonnes/year	0.001	0.00050	0.00008	ka/t		(WS/2.2) ^{1.3} in m/	. 2	MC in %	2.2)		tonnes/BCM						
OB - Excavator loading OB to haul truck - OC3	23.355	11.046	1.673	22.097.591	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC4	56,226	26,593	4.027		tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM	72.8	% OB excavat	or only			
OB - Excavator rehandle - OC1	512	242			tonnes/year	0.001	0.00050	0.00008		0.893	(WS/2.2) ^{1.3} in m/	2	MC in %	2.2			tonnes/BCM		% OB rehand				
OB - Excavator rehandle - OC3	584	276			tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM		% OB rehand				
OB - Excavator rehandle - OC4	1,699	804			tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM		% OB rehand				
OB - Hauling to dump - OC1	146,817	38,663	6,447		tonnes/year	0.074		0.000			tonnes/load		km/return tr	5.3		0.1	kg/VKT		% silt content		Ave GMV (toni	90	% Control
OB - Hauling to dump - OC2	140,017	- 30,003	0,447	17,373,030	tonnes/year	0.074		0.002			tonnes/load		km/return tr	5.3			kg/VKT		% silt content		Ave GMV (toni		% Control
OB - Hauling to dump - OC3	101,727	27.785	5.719	22 007 501	tonnes/year	0.045		0.002			tonnes/load		km/return tr	5.3			kg/VKT		% silt content	279	Ave GMV (toni		% Control
OB - Hauling to dump - OC3 OB - Hauling to dump - OC4 (930 E)	101,727	27,638	5,642	26,599,562		0.043		0.001			tonnes/load		km/return tr	5.8			kg/VKT		% silt content		Ave GMV (toni		% Control
OB - Hauling to dump - OC4 (830 E)	221.105	57,926	9,333	26,599,562		0.037	0.009	0.001			tonnes/load		km/return tr	5.3			kg/VKT		% silt content		Ave GMV (toni		% Control
OB - Emplacing at dump - OC1	20,496	9,694	1,468		tonnes/year	0.002	0.00050	0.0002			(WS/2.2) ^{1.3} in m/		MC in %	5.5	1.0	0.1	Kg/VK1	4.2	70 3III COITIEIII	217	Ave Giviv (totil	70	70 COINTOI
OB - Emplacing at dump - OC2	20,496	7,074	1,400	17,373,036	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) In m/		MC in %										
OB - Emplacing at dump - OC2 OB - Emplacing at dump - OC3	23,355	11,046	1,673	22 007 501	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) III III/		MC in %										
OB - Emplacing at dump - OC4	56,226	26,593	4,027		tonnes/year	0.001	0.00050	0.00008			(WS/2.2) II II/		MC in %			_				_			
OB - Dozers on OB (dump and pit) - OC1	134.636	32,536	14,137		hours/year	16.7	4.0	1.8			SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC2	134,030	32,530	14,137	6,045	hours/year	16.7		1.8			SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC3	149.664	36,167	15,715		hours/year	16.7					SC in %		MC in %			_				_			
OB - Dozers on OB (dump and pit) - OC3	844.749	204,139	88.699		hours/year	16.7		1.8			SC in %		MC in %			_							-
Coal	044,749	204,139	00,077	30,477	nours/year	10.7	4.0	1.0 F	Ky/II	10	/ 3C III /6		IVIC III 70			_							
CL - Drilling - OC1	82	43	2	2 7/1	holes/year	0.10	0.05	0.00	ka/hole	0.001	Holes/tonne RON	4				_						70	% Control
CL - Drilling - OC2	02	43		2,741	holes/year	0.10	0.05	0.00			Holes/tonne RON					_							% Control
CL - Drilling - OC3	218	113	7	7 250	holes/year	0.10			kg/hole		Holes/tonne RON					_							% Control
CL - Drilling - OC4	176	91			holes/year	0.10		0.00			Holes/tonne RON					_				_			% Control
CL - Blasting - OC1	6,831	3,552			blasts / year	859			kg/hole		Area of blast in n		hlasts/tonn	DOM.								70	76 CUITTUI
CL - Blasting - OC2	- 0,031	3,552	203		blasts / year				kg/blas		Area of blast in r												
CL - Blasting - OC3	18.086	9.405	543		blasts / year	859			kg/blas		Area of blast in r									-			
CL - Blasting - OC4	14,577	7,580	437		blasts / year	859			kg/blas		Area of blast in r												
CL - Dozers ripping/pushing/clean-up - OC1	17,232	4.065			hours/year	18.2		0.4			SC in %		MC in %	KOW		_						50	% Control
CL - Dozers ripping/pushing/clean-up - OC2	17,232		-	1,073	hours/year	18.2		0.4			SC in %		MC in %		_	_				_			% Control
CL - Dozers ripping/pushing/clean-up - OC3	45.633	10.765	1.004	5.013	hours/year	18.2		0.4			SC in %		MC in %										% Control
CL - Dozers ripping/pushing/clean-up - OC4	36,776	8.675			hours/year	18.2					SC in %		MC in %										% Control
CL - Loading ROM coal to haul truck - OC1	143.987	20,229	2.736		tonnes/year	0.053	0.007	0.001			MC in %	7.4	IVIC III 76							-		30	76 CUITTUI
CL - Loading ROM coal to haul truck - OC1	143,767	20,229	2,730	2,741,390	tonnes/year	0.053	0.007	0.001			MC in %												
CL - Loading ROM coal to haul truck - OC3	381.244	53.561	7.244	7 250 402	tonnes/year	0.053	0.007	0.001			MC in %												
CL - Loading ROM coal to haul truck - OC4	307.275	43,169	5.838		tonnes/year	0.053	0.007	0.001			MC in %				_	_							
CL - Hauling ROM to hopper - OC1	79.588	20.313	2,684		tonnes/year	0.053	0.007	0.007			tonnes/load	10.6	km/return tr	4.9	1.2	0.1	kg/VKT	4.2	% silt content	234	Ave GMV (ton	90	% Control
CL - Hauling ROM to hopper - OC1	17,588	20,313	2,084	2,741,398	tonnes/year	0.288	0.071	0.007			tonnes/load	16.0	km/return tr	4.9			kg/VKT		% silt content	234	Ave GMV (toni		% Control
CL - Hauling ROM to hopper - OC2 CL - Hauling ROM to hopper - OC3	476.588	119.757	13.703	7 250 402	tonnes/year tonnes/year	0.434		0.011			tonnes/load		km/return tr km/return tr	4.9			kg/VKT		% silt content % silt content		Ave GMV (toni		% Control
CL - Hauling ROM to hopper - OC3 CL - Hauling ROM to hopper - OC4	476,588 87.310	22.869	3,679		tonnes/year tonnes/year	0.654		0.016			tonnes/load		km/return tr km/return tr				kg/VKT		% silt content % silt content		Ave GMV (toni		% Control
CL - Hauling ROM to nopper - OC4 CL - Unload to hopper or stockpile for washing (OC1,	236.354	33,206	4,491		tonnes/year tonnes/year	0.147	0.036	0.004			MC in %	5.4	KIIVI ETUI TI	4.9	1.2	2 0.1	ky/VKI	4.2	∞ siit content	234	Ave GIVIV (IONI		% Control
	236,354 153.637	21.585	2,919		tonnes/year tonnes/year	0.053	0.007	0.001			MC in %			-	_	-				-			% Control
CL - Unload to hopper or stockpile (OC4) CL - Rehandling - (OC1 + OC2 + OC3) - at hopper for	153,637	21,585 17,692	2,919		tonnes/year tonnes/year	0.053	0.007	0.001			MC in %			-	1	-	1			-		50	> ∪ontrol
	125,929 81.858	17,692				0.053	0.007				MC in %				_	-				-			
CL - Rehandling - OC4 - at hopper			1,555		tonnes/year			0.001					MC i= 0/		_	_				_			
CHPP - Transfer to Sizing Station (OC4)	990	468	71	5,850,284	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/	g 7.4	MC in %										

	TSP	PM10	PM25			Emission	Emission	Emission		Variable								Varia		Varia		Varia	
ACTIVITY	emission (kg/y)	emission (kg/y)	emission (kg/y)	Intensity	Units	Factor - TSP	Factor - PM10	Factor - PM25	Units	1 Ui	nits	Variable 2	Units			ble 3 - PM25	Units	ble 4	Units	ble 5	Units	ble 6	Units
Bypass																							
CL - bypass - direct dumping at bypass stockpile (OC1	169	80	12		tonnes/year	0.000	0.00008			0.893 (WS/2.2			MC in %										
CL - bypass - conveying to bypass stockpile (OC4) (1	205	97	15		tonnes/year	0.000	0.00008			0.893 (WS/2.2			MC in %										
CL - bypass - discharge to bypass stockpile (OC4)	205	97	15		tonnes/year	0.000	0.00008			0.893 (WS/2.2			MC in %										
CL - bypass - transfer station (OC)	374	177	27		tonnes/year	0.000	0.00008			0.893 (WS/2.2	2) ^{1.3} in m	7.4	MC in %										
CL - bypass - bypass coal sizing station	5,967	2,652	280		tonnes/year	0.0027	0.00120																
CL - bypass - OC bypass coal conveyed to product sto	376	147	18	0.36	ha	0.40	0.2			8,760 hours												70	% Control
CL - bypass - bypass coal conveyed to TLO (3 transfe	1,122	531	80	2,209,935	tonnes/year	0.000	0.00008	0.00001 k	g/t	0.893 (WS/2.2	2) ^{1.3} in m	7.4	MC in %										
Open Cut																							
CHPP - Conveying to Sizing Station (OC1+OC2+OC3)	158	62	7		ha	0.40	0.2			8,760 hours												70	% Control
CHPP - Transfer to Sizing Station (OC4)	785	371	56		tonnes/year	0.000	0.00008			0.893 (WS/2.2	2)1.3 in m	7.4	MC in %										
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	36,829	16,368	1,731			0.0027	0.00120																
CHPP - Conveying to CHPP (OC)	39	15	2		ha	0.40	0.2	0.0	kg/ha/	8,760 hours												70	% Control
CHPP - Washing (OC)		-	-	13,640,349	tonnes/year					0.7(0.1													
CHPP - Conveying to CHPP Product Stockpile (OC)	208	81	10		ha	0.40	0.2			8,760 hours												70	% Control
CHPP - Unloading to CHPP Product Stockpile (OC)	1,195	565		10,762,539	tonnes/year	0.000	0.00005			0.893 (WS/2.2			MC in %										
CHPP - Reclaim and Conveying to TLO (3 transfer poin	4,321	2,044	310	12,972,474	tonnes/year	0.000	0.00005	0.00001 k	g/t	0.893 (WS/2.2	2) ^{1.3} in m	10	MC in %										
Underground								<u> </u>		0.7(0)													
CHPP - Conveyor transfer point at UG portal entrance	310	121	15			0.40	0.2		kg/ha/														% Control
CHPP - Conveyor to UG1 pit top	386	151	18			0.40	0.2		kg/ha/													70	% Control
CHPP - Unload to ROM stockpile	1,354	640	97		tonnes/year	0.000	0.00008			0.893 (WS/2.2	2) ^{1.3} in m	7.4	MC in %										
CHPP - Transfer to sizing station (at product coal stoo	1,354	640	97		tonnes/year	0.000	0.00008			0.893 (WS/2.2			MC in %										
CHPP - Unload to product stockpile	1,354	640	97		tonnes/year	0.000	0.00008			0.893 (WS/2.2	2)1.3 in m		MC in %										
CHPP - Reclaim and conveyor to TLO (3 transfer point	4,062	640	97	8,000,000	tonnes/year	0.000	0.00008	0.00001 k	g/t	0.893 (WS/2.2	2) ^{1.3} in m	7.4	MC in %										
Dozers		-	-																				
CHPP - Dozer pushing ROM coal at UG1 pit top	36,694	8,656	807	4,031	hours/year	18.2	4.3			5 SC in %			MC in %										% Control
CHPP - Dozer pushing ROM coal (bypass) at bypass s	13,712	3,139	302	2,228	hours/year	12.3	2.8			5 SC in %			MC in %										% Control
CHPP - Dozer pushing washed Product coal	51,069	10,933	1,124	10,846	hours/year	9.4	2.0			4 SC in %			MC in %										% Control
CHPP - Dozer pushing bypass (UG + OC) Product coal	48,452	10,372	1,066	10,290	hours/year	9.4	2.0	0.2 k	g/h	4 SC in %)	10	MC in %									50	% Control
Rejects		-	-							0.7(0.1													
CHPP - Conveying rejects from CHPP to loadout	183	72	9			0.40	0.2		kg/ha/		1.1											70	% Control
CHPP - Loading rejects	121 114.889	57 29.101	9 3.595		tonnes/year	0.000	0.00002			0.893 (WS/2.2			MC in % km/return t	4.9	1.2	0.4			% silt content	004	Ave GMV (ton	- 00	% Control
CHPP - Hauling rejects CHPP - Unloading rejects	114,889	29,101	3,595		tonnes/year	0.396	0.00002			0.893 (WS/2.2			MC in %	4.9	1.2	0.11	kg/VKT	4.2	% siit content	234	Ave GMV (tor	1 90	% Control
	121			2,877,809	tonnes/year	0.000	0.00002	0.00000 K	g/t	0.893 (WS/2.2	2) ''' in m	9 20	MC in %										
Wind Erosion	31.152	15.576	2.336	36.65		0.10	0.05	0.007	kg/ha/	8.760 hours													
OC1 - Active Mining Area	4.977	2.488	2,330	11.71		0.10	0.05		kg/na/ kg/ha/													50	% Control
OC1 - Inactive area (no rehabilitation) OC1 - Partially rehabilitated (e.g. stable and seeded)	2,614	1,307	196			0.10	0.05		kg/na/ kg/ha/														% Control
OC1 - Partially renabilitated (e.g. stable and seeded) OC1 - Partially rehabilitated (e.g. stable and seeded)	19.502	9,751	1.463	76		0.10	0.05		kg/na/ kg/ha/														% Control
OC1 - Partially renabilitated (e.g. stable and seeded) OC1 - Hard Stand Areas (Workshops, roads, conveyo	85.179	42.589	6.388	100		0.10	0.05		kg/na/ kg/ha/													70	% CONTROL
		42,589	0,388		ha	0.10	0.05																
OC2 - Active mining area (pit, active dumping area) OC2 - Inactive area (no rehabilitation)	1,216	608	91		ha	0.10	0.05		kg/ha/ kg/ha/													EO	% Control
OC2 - Partially rehabilitated (e.g. stable and seeded)	1,210		- 71		ha	0.10	0.05																% Control
OC2 - Hard Stand Areas (Workshops, roads, conveyo	17.850	8.925	1.339	21		0.10	0.05		kg/IIa/													70	76 CUITTUI
OC3 - Active mining area (pit, active dumping area)	110.475	55.237	8.286	130		0.10	0.05		kg/na/	8,760 Hours													
OC3 - Inactive area (no rehabilitation)	- 110,475	33,237	0,200	130	ha	0.10	0.05		kg/IIa/													EO	% Control
OC3 - Partially rehabilitated (e.g. stable and seeded)	44.602	22.301	3.345	175		0.10	0.05		kg/IIa/														% Control
OC3 - Hard Stand Areas (Workshops, roads, conveyo	31.969	15.984	2,398	38		0.10	0.05		kg/IIa/													70	76 CUITTIOI
OC4 - Active mining area (pit, active dumping area)	129,421	64,711	9,707	152		0.10	0.05		kg/ha/														
OC4 - Inactive area (no rehabilitation)	16,635	8.317	1,248	39		0.10	0.05		kg/IIa/													50	% Control
OC4 - Partially rehabilitated (e.g. stable and seeded)	32,449	16,224	2,434	127		0.10	0.05		kg/ha/														% Control
OC4 - Hard Stand Areas (Workshops, roads, conveyo	29.589	14,794	2,434	35		0.10	0.05		kg/ha/														50111101
Stockpile - ROM coal stockpile (OC1)	3,107	1,553	2,219		ha	0.10	0.05	0.00.	kg/ha/													50	% Control
Stockpile - ROM coal stockpile (UC)	769	385	58		ha	0.10	0.05		kg/IIa/														% Control
Stockpile - ROM coal stockpile (OC3)	1.471	735	110		ha	0.10	0.05		kg/IIa/														% Control
Stockpile - ROM coal stockpile (OC4)	3,336	1.668	250		ha	0.10	0.05		kg/IIa/														% Control
Stockpile - Row coal Stockpile (OC4) Stockpile - Bypass Coal Stockpile	5,143	2,571	386		ha	0.10	0.05		kg/na/														% Control
Stockpile - Bypass Coal Stockpile Stockpile - Product Coal Stockpile	4,526	2,263	339		ha	0.10	0.05																% Control
Grading roads	141.796	49.543	4.396			0.10	0.03			8 speed c	of arador	0.6575	hours utilise	d/total b	OUTE							30	75 50HH01
Total TSP emissions (kg/yr)		1,394,039	270,888	230,300	****	0.02	0.22	0.02 K	g/ visi	o speed c	, grauti	0.0373	nours utilist	Jar total I	oui 3								
. ca c. c.iiissioiis (kg/yi/	5,230,737	2,337,033	270,000																	-		_	

Table C-4: Emission inventory – Year 2026

						i abie (J-4. EIII	1331011	ilivelito	ily – ie	ar 2026												
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - PM25	Units	Variable 1	Units	Variable 2	Units	Varia ble 3 - TSP	Varia ble 3 PM1 0	aria le 3 - M25	Units	Vari able 4	Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden															U							-	
OB - Stripping Topsoil - OC4	6,300	2,463	296	450	hours/year	14.0	5.5	0.7	kq/h	450	total hours/year												
OB - Drilling - OC4	8,184	4,256	246		holes/year	0.59	0.31		kg/hole		holes/bcm											70	% Control
OB - Blasting - OC4	75,010	39,005	2,250		blasts/year	572	297.2	17.1	kg/blast	18,900	Area of blast in m2	0.0000021	blasts/bcm										
OB - Excavator loading OB to haul truck - OC4	105,337	49,822	7,544	99,666,144	tonnes/year	0.001	0.00050	0.00008	kg/t	0.893	(WS/2.2) ^{1.3} in m/s		MC in %	2.2		to	onnes/BCM	72.5	% OB excavator	only		\Box	
OB - Excavator rehandle - OC4	3,196	1,512	229	3,024,352	tonnes/year	0.001	0.00050	0.00008	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	2	MC in %	2.2		to	onnes/BCM	2.2	% OB rehandle				
OB - Hauling to dump - OC4 (930 E)	137,761	34,185	3,418		tonnes/year	0.037	0.009	0.001		317	tonnes/load		km/return trip	5.8	1.4		g/VKT		% silt content		Ave GMV (ton	90	% Control
OB - Hauling to dump - OC4 (830 E) (north)	304,955	75,674	7,567	37,374,804	tonnes/year	0.082		0.002			tonnes/load		km/return trip	5.3	1.3	0.1 kg			% silt content				% Control
OB - Hauling to dump - OC4 (830 E) (south)	203,303	50,449	5,045			0.082	0.020	0.002			tonnes/load		km/return trip	5.3	1.3	0.1 kg	g/VKT	4.2	% silt content	279	Ave GMV (ton	90	% Control
OB - Emplacing at dump - OC4	105,337	49,822	7,544		tonnes/year	0.001		0.00008		0.893	(WS/2.2) ^{1.3} in m/s		MC in %									-	
OB - Dozers on OB (dump and pit) - OC4	1,110,055	268,251	116,556	66,330	hours/year	16.7	4.0	1.8	kg/h	10	SC in %	2	MC in %									-	
Coal																						$oldsymbol{}$	
CL - Drilling - OC4	480	250	14	16,000	holes/year	0.10	0.05		kg/hole		Holes/tonne ROM											70	% Control
CL - Blasting - OC4	39,867	20,731	1,196		blasts / year	859			kg/blast		Area of blast in m2		blasts/tonne ROM									\vdash	
CL - Dozers ripping/pushing/clean-up - OC4	116,727	27,536	2,568		hours/year	18.2		0.4	kg/h		SC in %	7.4	MC in %									50	% Control
CL - Loading ROM coal to haul truck - OC4	840,369	118,064	15,967		tonnes/year	0.053	0.007	0.001	kg/t		MC in %											\vdash	ł
CL - Hauling ROM to hopper - OC4	278,086	69,006	6,901	16,000,000		0.174	0.043	0.004			tonnes/load	6.4	km/return trip	4.9	1.2	0.1 kg	:g/VKT	4.2	% silt content	234	Ave GMV (ton		% Control
CL - Unload to hopper or stockpile (OC4)	420,184	59,032	7,984		tonnes/year	0.053	0.007	0.001			MC in %	1						-				50	% Control
CL - Rehandling - OC4 - at hopper	111,937	15,726	2,127	4,262,400		0.053	0.007	0.001			MC in %				-			-				50	% Control
CHPP - Transfer to Sizing Station (OC4)	2,708	1,281	194	16,000,000	tonnes/year	0.000	0.00008	0.00001	Kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4	MC in %					-				\vdash	
Bypass				, ,			0.5	0.000	1 0		**************************************	-	MO !- 0/		\vdash	_						-	
CL - bypass - conveying to bypass stockpile (OC4) (1 transfer po	1,124	531	80	6,638,573	tonnes/year	0.000		0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s		MC in %					-				\vdash	——
CL - bypass - discharge to bypass stockpile (OC4)	1,124	531	80		tonnes/year	0.000		0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s		MC in %									\vdash	-
CL - bypass - transfer station (OC)	1,124 17,924	531 7,966	80 842			0.000		0.00001	kg/t kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4	MC in %					-				\vdash	——
CL - bypass - bypass coal sizing station					tonnes/year					0.7/0	h												
CL - bypass - OC bypass coal conveyed to product stockpile CL - bypass - bypass coal conveyed to TLO (3 transfer points)	376 3.371	147 1.594	18 241	0.36		0.40	0.2	0.00001	kg/ha/hour	8,760			MC in %			_						/0	% Control
	3,3/1	1,594	241	6,638,573	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	1.4	MC in %									\vdash	
Open Cut	1.585	749	113			0.000	0.00008	0.00001			4.3		MC in %									\vdash	1
CHPP - Transfer to Sizing Station (OC4)					tonnes/year					0.893	(WS/2.2) ^{1.3} in m/s	7.4	MC in %									\vdash	
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	25,276	11,234	1,188		tonnes/year	0.0027			kg/t													\vdash	
CHPP - Conveying to CHPP (OC)	39	15	2			0.40	0.2	0.0	kg/ha/hour	8,760	nours											70	% Control
CHPP - Washing (OC)		-	-	9,361,427	tonnes/year																	\vdash	
CHPP - Conveying to CHPP Product Stockpile (OC)	208	81	10			0.40	0.2		kg/ha/hour	8,760	hours											70	% Control
CHPP - Unloading to CHPP Product Stockpile (OC)	801	379	57		tonnes/year	0.000		0.00001		0.893	(WS/2.2) ^{1.3} in m/s		MC in %									\vdash	
CHPP - Reclaim and Conveying to TLO (3 transfer points)	4,616	2,183	331	13,855,717	tonnes/year	0.000	0.00005	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	10	MC in %									\vdash	
Underground									1 0 0	8.760	h												20.00
CHPP - Conveyor transfer point at UG portal entrance	310	121	15			0.40	0.2		kg/ha/hour														% Control
CHPP - Conveyor to UG1 pit top	386	151	18			0.40	0.2		kg/ha/hour	8,760	hours											/0	% Control
CHPP - Unload to ROM stockpile CHPP - Transfer to sizing station (at product coal stockpile area)	1,354	640 640	97 97		tonnes/year tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s		MC in % MC in %									\vdash	
			97								(WS/2.2) ^{1.3} in m/s											\vdash	
CHPP - Unload to product stockpile CHPP - Reclaim and conveyor to TLO (3 transfer points)	1,354 4.062	640 1.921			tonnes/year	0.000		0.00001		0.893	(WS/2.2) ^{1.3} in m/s		MC in % MC in %									\vdash	
Dozers	4,062	1,921	291	8,000,000	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4	MC IN %									\vdash	
CHPP - Dozer pushing ROM coal at UG1 pit top	27,063	6,384	595	2.072	hours/year	18.2	4.3	0.4	kg/h	-	SC in %	7.4	MC in %									E0	% Control
CHPP - Dozer pushing ROM coal (bypass) at bypass stockpile	41.173	9,424	906		hours/year	18.2			kg/h		SC in %		MC in %										% Control
CHPP - Dozer pushing ROM coal (bypass) at bypass stockpile CHPP - Dozer pushing washed Product coal	34.312	7.345	755		hours/year	9.4			kg/n ka/h		SC in %		MC in %									50	% Control
CHPP - Dozer pushing washed Floduct coal CHPP - Dozer pushing bypass (UG + OC) Product coal	59,498	12.737	1,309		hours/year	9.4			kg/h		SC in %		MC in %			_							% Control
Rejects	59,498	12,/3/	1,309	12,636	nours/year	9.4	2.0	0.2	kg/n	4	SC IN %	10	MC In %									50	% Control
CHPP - Conveying rejects from CHPP to loadout	183	72	9	0.17	ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours											70	% Control
CHPP - Loading rejects	90	43	6		tonnes/year	0.000		0.00000			(WS/2.2) ^{1.3} in m/s	20	MC in %									70	76 COILLIOI
CHPP - Hauling rejects	68.714	17.051	1,705		tonnes/year	0.320	0.080	0.008		191	tonnes/load		km/return trip	4.9	1.2	0.1 kd	α Δ/KT	4.2	% silt content	224	Avo GMV (top	90	% Control
CHPP - Unloading rejects	90	43	1,705		tonnes/year	0.320		0.000			(WS/2 2) ^{1.3} in m/s		MC in %	4.7	1.2	U. 1 K	g/viki	4.2	70 SIII COINTEIN	234	Ave Giviv (torn	70	76 COITEO
Wind Erosion	,,,	70	ŭ	2,144,200	torines/year	0.000	0.00002	0.00000	Kg/t	0.075	(W3/2.2) III IIVS		1110 111 70									$\overline{}$	
OC1 - Inactive area (no rehabilitation)	-	-	-	-	ha	0.10	0.05	0.007	kg/ha/hour	8.760	hours											50	% Control
OC1 - Partially rehabilitated (e.g. stable and seeded)	3,118	1,559	234	12.23	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours												% Control
OC1 - Hard Stand Areas (Workshops, roads, conveyors etc)	94,952	47,476	7,121			0.10	0.05		kg/ha/hour	8,760													
OC2 - Active mining area (pit, active dumping area)	,			-	ha	0.10	0.05		kg/ha/hour	8,760	hours												
OC2 - Inactive area (no rehabilitation)			-	-	ha	0.10	0.05		kg/ha/hour	8,760												50	% Control
OC2 - Partially rehabilitated (e.g. stable and seeded)	-	-	-	-	ha	0.10	0.05		kg/ha/hour	8.760	hours												% Control
OC2 - Hard Stand Areas (Workshops, roads, conveyors etc)	17,851	8,925	1,339	21.00	ha	0.10	0.05		kg/ha/hour	8,760	hours												
OC3 - Active mining area (pit, active dumping area)			.,	-	ha	0.10	0.05		kg/ha/hour	8,760	hours												
OC3 - Inactive area (no rehabilitation)	-	-	-	-	ha	0.10	0.05		kg/ha/hour	8.760	hours											50	% Control
OC3 - Partially rehabilitated (e.g. stable and seeded)	-	-	-	-	ha	0.10	0.05		kg/ha/hour	8,760	hours												% Control
OC3 - Hard Stand Areas (Workshops, roads, conveyors etc)	-	-	-		ha	0.10			kg/ha/hour	8,760													
OC4 - Active mining area (pit, active dumping area) (OC4 north)	156.671	78.336	11.750	184.32	ha	0.10	0.05		kg/ha/hour	8,760	hours												
OC4 - Active mining area (pit, active dumping area) (OC4 south)	112,024	56.012	8.402	131.79		0.10	0.05		kg/ha/hour	8.760	hours											$\overline{}$	
OC4 - Inactive area (no rehabilitation)	,	-			ha	0.10	0.05		kg/ha/hour	8,760	hours	1										50	% Control
OC4 - Partially rehabilitated (e.g. stable and seeded)	41.005	20.503	3.075	160.81	ha	0.10	0.05		kg/ha/hour	8,760	hours												% Control
OC4 - Hard Stand Areas (Workshops, roads, conveyors etc)	18,343	9,172	1,376	21.58		0.10	0.05		kg/ha/hour	8,760													
Stockpile - ROM coal stockpile (OC1)	3.105	1.553	233			0.10	0.05		kg/ha/hour	8.760	hours	1										50	% Control
Stockpile - ROM coal stockpile (UC)	768	384	58	1.81		0.10	0.05		kg/ha/hour	8,760	hours												% Control
Stockpile - ROM coal stockpile (OC4)	3,953	1,976	296			0.10	0.05		kg/ha/hour	8,760	hours	1											% Control
Stockpile - Row coal Stockpile (OC4) Stockpile - Bypass Coal Stockpile	5,143	2,572	386	12.10		0.10	0.05		kg/ha/hour	8,760	hours											50	% Control
Stockpile - Product Coal Stockpile	2,383	1,191	179		square metre	9 0.10	0.05		kg/ha/hour	8.760	hours												% Control
Grading roads	141,796	49,543	4.396	230.388		0.62	0.22		kg/VKT	8	speed of graders in k	0.6575	hours utilised/total	l hours								_	
Total TSP emissions (kg/yr)		1,249,423		222,500	T			02	J	1	,	2.2370											
	.,	,,,,3																_				-	

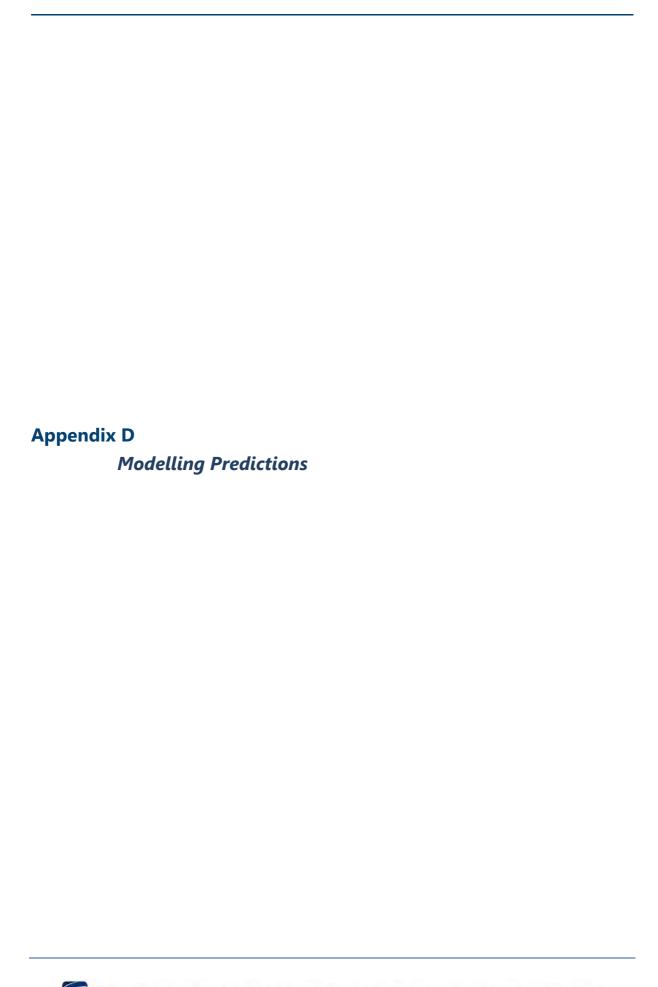


Table D-1: Modelling predictions for 2019

	DN	/l _{2.5}	DA	ларіе Л ₁₀	TSP	lling prediction	PM _{2.5}	PM ₁₀	TSP	DD
		/12.5 /m³)		/m³)	μg/m³)	(g/m²/mth)	μg/m³)	μg/m³)	(μg/m³)	(g/m²/mth)
					k incorporat		(1-6/ /		l impact	(8/ /)
Receptor			N	/lodificat	ion					
ID	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.		Δir	quality impact	criteria			<u> </u>
	25	-	50	-	-	2	8	25	90	4
					Privately-	owned recepto	ors			
9	5	2	26	10	21	0.42	6.8	19	39	1
26	6	2	27	9	17	0.37	6.3	18	36	1
37	3	1	14	4	9	0.17	5.5	11	24	1
39	3	1	11	2	4	0.08	4.9	8	19	1
40	3	1	18	4	8	0.16	5.4	10	23	1
60	4	1	14	5	10	0.22	5.7	12	26	1
61	3	1	13	5	10	0.22	5.7	12	26	1
66	4	1	20	7	14	0.28	6.3	18	35	1
70	4	1	16	6	13	0.24	6.1	14	30	1
75	4	1	19	5	12	0.24	5.9	13	28	1
79	3	1	15	5	10	0.22	5.7	12	27	1
80	3	1	13	4	8	0.18	5.5	11	25	1
82	3	1	13	5	9	0.21	5.6	12	25	1
83	3	1	13	4	8	0.17	5.5	11	24	1
84	3	1	13	4	8	0.17	5.5	11	24	1
86	3	1	13	4	7	0.14	5.3	10	22	1
87	3	1	13	4	8	0.16	5.4	11	23	1
88	3	1	13	4	8	0.16	5.5	11	23	1
89	3	1	12	4	7	0.14	5.3	10	22	1
90	3	1	12	3	7	0.14	5.3	10	22	1
91	3	1	13	4	8	0.16	5.4	11	23	1
94	3	1	11	3	5	0.13	5.1	9	20	1
95	3	1	12	3	6	0.13	5.2	9	21	1
96	3	1	12	3	6	0.13	5.2	10	21	1
97	3	1	12	3	6	0.14	5.2	10	21	1
98	3	1	13	3	6	0.14	5.2	10	21	1
99	3	1	14	4	7	0.14	5.3	10	22	1
100	3	1	15	4	8	0.16	5.4	10	23	1
101	3	1	14	3	6	0.13	5.2	10	21	1
102	3	1	12	3	6	0.12	5.1	9	20	1
103	3	1	12	3	5	0.12	5.1	9	20	1
104	2	1	9	3	5	0.11	5.0	9	19	1
105	2	1	10	2	5	0.11	5.0	9	19	1
106	3	1	10	3	5	0.10	5.0	9	19	1
107	3	1	10	3	5	0.11	5.1	9	20	1
109	2	1	10	2	4	0.08	4.9	8	18	1
110	2	0	11	2	4	0.08	4.9	8	18	1
111	2	1	10	2	4	0.09	4.9	8	19	1
112	2	1	10	2	4	0.09	4.9	8	18	1
113	2	1	10	2	4	0.09	4.9	8	19	1
119	3	1	16	4	7	0.03	5.3	10	22	1
149	4	1	19	7	14	0.14	6.3	19	36	1
160	4	1	20	7	14	0.29	6.3	18	35	1
100				_ ′	177	0.20	0.5	10		1 *

	PΝ	/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolark		Complex Modificat	cincorporation	ting the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
	410.				Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
162	4	1	20	7	14	0.28	6.3	19	36	1
168	4	1	20	7	14	0.29	6.3	18	35	1
171	2	0	7	1	2	0.05	4.6	7	16	1
180	4	1	17	4	9	0.22	5.7	12	26	1
181	4	1	16	4	9	0.22	5.6	12	26	1
182	4	1	16	4	9	0.21	5.6	12	25	1
183	3	1	15	4	8	0.22	5.5	11	25	1
186	3	1	13	4	7	0.20	5.4	11	23	1
187	3	1	12	3	7	0.18	5.4	11	23	1
188	3	1	11	3	6	0.18	5.3	10	22	1
189	3	1	11	3	7	0.17	5.3	10	22	1
190	3	1	10	3	6	0.16	5.2	10	21	1
191	3	1	10	3	6	0.15	5.2	10	21	1
192	3	1	10	3	6	0.15	5.2	10	21	1
194	2	1	9	3	5	0.14	5.1	9	20	1
195	3	1	10	3	5	0.13	5.1	9	21	1
196	2	1	9	2	5	0.13	5.0	9	20	1
200	2	1	9	2	4	0.12	5.0	9	19	1
202	2	1	9	2	4	0.12	5.0	9	19	1
203	2	1	10	2	5	0.12	5.0	9	19	1
204	2	1	10	2	5	0.12	5.0	9	19	1
206	2	1	9	2	4	0.10	4.9	8	19	1
207	2	0	8	2	3	0.08	4.8	8	17	1
208	2	0	8	2	3	0.08	4.8	8	17	1
209	2	0	8	1	2	0.07	4.7	7	17	1
210	2	0	8	1	2	0.06	4.7	7	17	1
217	2	0	9	2	3	0.07	4.8	8	17	1
218	2	0	8	1	3	0.06	4.7	7	17	1
219	2	0	8	2	3	0.08	4.8	8	18	1
220	2	0	8	2	3	0.07	4.7	8	17	1
222	2	0	9	2	4	0.09	4.9	8	18	1
223	2	1	10	2	4	0.10	4.9	8	19	1
224	3	1	11	3	6	0.13	5.1	9	20	1
226	3	1	10	3	6	0.13	5.1	9	21	1
227	3	1	10	3	6	0.13	5.2	10	21	1
229	3	1	10	3	6	0.14	5.2	10	21	1
230	3	1	11	3	6	0.14	5.3	10	22	1
231	3	1	11	3	6	0.14	5.3	10	22	1
232	3	1	10	3	6	0.14	5.3	10	22	1
233	3	1	11	3	7	0.15	5.3	10	22	1
234	3	1	11	3	7	0.15	5.3	10	22	1
235	3	1	11	3	7	0.16	5.3	10	23	1
236	3	1	11	4	7	0.16	5.4	11	23	1
237	3	1	13	4	8	0.18	5.5	11	24	1
238	3	1	13	4	8	0.18	5.5	11	24	1

		/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ting the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
					Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
255	3	1	13	3	6	0.14	5.3	12	24	1
256	3	1	13	3	6	0.14	5.3	12	24	1
258	3	1	15	4	7	0.16	5.4	12	25	1
300	4	1	15	5	11	0.27	5.8	13	28	1
303	3	1	14	5	10	0.24	5.8	13	27	1
305	3	1	14	4	9	0.23	5.6	12	26	1
306	3	1	14	4	9	0.22	5.6	12	26	1
307	3	1	14	4	8	0.22	5.6	12	25	1
308	3	1	13	4	8	0.23	5.5	11	24	1
309	3	1	12	4	7	0.25	5.4	11	24	1
310	3	1	12	4	8	0.25	5.5	11	25	1
312	3	1	12	4	8	0.27	5.5	11	25	1
313	3	1	12	4	7	0.27	5.4	11	24	1
314	3	1	12	4	8	0.29	5.5	11	25	1
315	3	1	12	4	8	0.30	5.5	12	25	1
316	3	1	12	4	8	0.31	5.6	12	25	1
317	3	1	13	5	10	0.32	5.7	12	26	1
11 (a)	1	0	6	0	1	0.01	4.7	8	18	1
11 (b)	1	0	6	0	1	0.01	4.7	8	17	1
11 (c)	1	0	7	0	1	0.01	4.7	8	18	1
184 (a)	3	1	14	4	8	0.20	5.5	11	25	1
184 (b)	3	1	14	4	8	0.20	5.5	11	24	1
201 (a)	2	1	9	2	4	0.12	5.0	9	19	1
201 (b)	2	1	9	2	5	0.12	5.0	9	19	1
41 (a)	3	1	12	3	6	0.11	5.1	9	20	1
41 (b)	3	1	10	3	6	0.13	5.2	10	21	1
46B	5	1	21	8	16	0.32	6.7	21	40	1
		ı			Mine-o	wned receptors	5			
5	10	4	44	17	38	0.75	9	27	58	1
20	7	3	30	12	26	0.49	7	21	45	1
21	6	2	24	10	21	0.42	7	18	40	1
22	6	2	23	8	18	0.35	7	17	37	1
23	6	2	25	8	17	0.31	7	16	35	1
25	6	2	29	10	20	0.46	7	20	39	1
28	7	2	33	8	17	0.33	6	15	32	1
30	6	2	32	8	17	0.30	6	14	32	1
31	8	2	35	10	19	0.36	7	16	35	1
32	2	0	8	1	1	0.03	5	7	16	1
35	4	1	18	3	6	0.12	5	10	21	1
36	20	7	103	30	74	1.39	12	37	89	2
41	6	2	24	8	16	0.31	6	16	34	1
47	4	0	15	2	3	0.05	5	8	17	1
48	1	0	4	0	1	0.02	4	6	15	1
49	6	2	26	9	18	0.39	6	18	36	1
51	4	0	15	2	3	0.05	5	8	17	1

	PN	/l _{2.5}		VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(µg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ting the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.	7.11.11.0.00	ave.	ave.	ave.	7
	ave.		ave.							
	_	ı	_		Air	quality impact		_		ı
F2	25	-	50	-	-	2	8	25	90	4
52	1	0	5	0	0	0.01	4	6	15	1
58	6	2	24	8	17	0.35	6	16	34	1
59	4	2	17	7	15	0.32	6	14	32	1
63	5	2	21	7	14	0.26	6	15	32	1
64	5	1	19	6	13	0.25	6	14	31	1
69	1	0	6	0	1	0.01	4	7	15	1
74	4	1	19	6	12	0.24	6	13	29	1
76	4	1	17	5	11	0.23	6	13	27	1
77	4	1	17	6	12	0.27	6	13	29	1
78	3	1	14	5	9	0.20	6	12	26	1
81	3	1	13	5	10	0.22	6	12	26	1
152	4	1	20	7	13	0.26	6	18	35	1
153	4	1	20	7	13	0.26	6	18	35	1
157	4	1	20	7	14	0.27	6	18	35	1
158	4	1	19	7	13	0.24	6	17	33	1
159	4	1	20	7	14	0.27	6	18	35	1
161	4	1	20	7	14	0.28	6	18	35	1
165	4	1	20	7	14	0.28	6	19	36	1
169	4	1	20	6	12	0.25	6	15	30	1
170	4	1	15	5	11	0.26	6	13	29	1
172	4	1	16	6	12	0.24	6	14	30	1
173	4	1	18	6	13	0.29	6	15	31	1
175	4	1	14	5	11	0.24	6	13	28	1
176	3	1	15	5	11	0.23	6	13	28	1
177	4	1	16	5	10	0.22	6	13	28	1
239	3	1	14	4	9	0.19	6	11	25	1
240	4	1	16	5	10	0.21	6	12	26	1
241	4	1	17	5	10	0.21	6	12	27	1
253	2	0	10	1	2	0.05	5	12	23	1
254	2	0	12	2	4	0.10	5	11	23	1
257	3	1	15	4	7	0.16	5	12	25	1
301	4	1	15	5	10	0.26	6	13	28	1
302	4	1	14	5	10	0.25	6	13	27	1
319	1	0	5	1	1	0.04	5	7	16	1
319	1	0	4	1	1	0.04	5	7	16	1
319	1	0	2	0	1	0.03	5	7	16	1
319	1	0	2	0	1	0.02	5	7	16	1
319	1	0	2	0	0	0.02	5	7	15	1
319	1	0	2	0	0	0.02	5	10	20	1
320	3	1	13	4	8	0.17	5	12	25	1
41C	4	1	20	7	14	0.27	6	18	35	1
29c	6	1	23	4	8	0.14	5	11	23	1

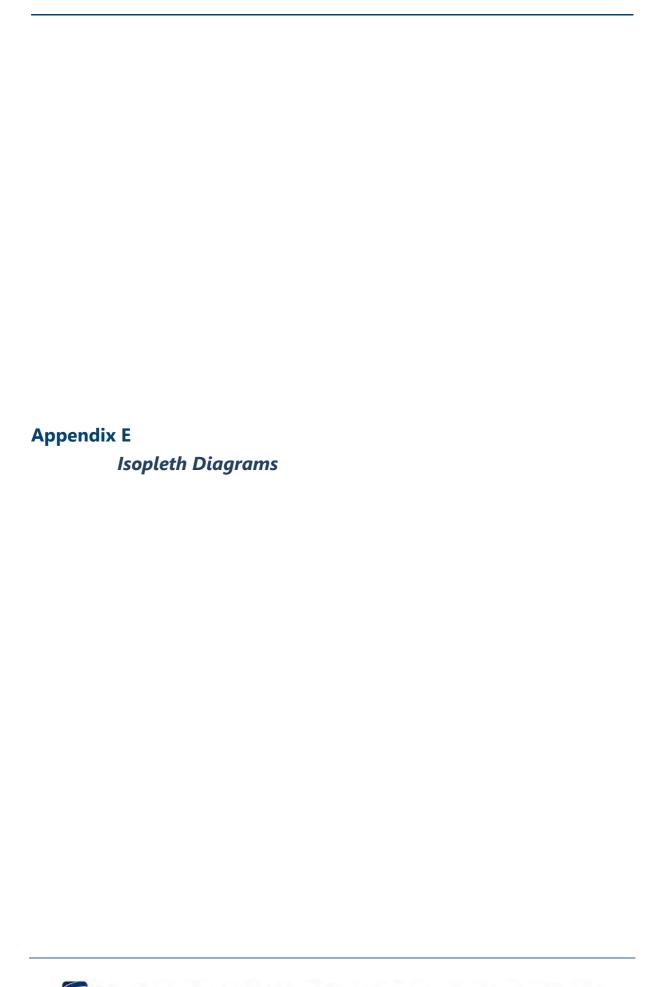
Table D-2: Modelling predictions for 2021

	PN	1 _{2.5}		/I ₁₀	TSP	DD DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ing the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.	7 min aver	ave.	ave.	ave.	7
	ave.		ave.							
				<u> </u>	Air	quality impact				
	25	-	50	-	- Privately-	2 owned receptor	l 8	25	90	4
9	9	3	40	13	27	0.50	7.6	21	45	1
26	9	2	40	10	18	0.31	6.7	18	36	1
37	3	1	15	4	6	0.11	5.2	10	21	1
39	2	1	11	3	4	0.08	4.9	9	19	1
40	3	1	18	4	7	0.12	5.3	10	22	1
60	3	1	11	3	5	0.09	5.3	10	21	1
61	3	1	10	3	5	0.08	5.2	10	21	1
66	5	1	20	7	14	0.26	6.2	17	33	1
70	4	1	16	4	7	0.13	5.6	12	24	1
75	4	1	14	3	5	0.08	5.3	11	22	1
79	3	1	11	3	5	0.08	5.2	10	21	1
80	3	1	10	3	4	0.07	5.1	10	20	1
82	3	1	10	3	5	0.08	5.2	10	21	1
83	2	1	11	3	5	0.08	5.1	10	20	1
84	2	1	12	3	5	0.08	5.2	10	20	1
86	3	1	13	3	5	0.08	5.1	10	20	1
87	3	1	13	3	5	0.08	5.1	10	20	1
88	3	1	14	3	5	0.09	5.2	10	21	1
89	3	1	13	3	5	0.08	5.1	9	20	1
90	3	1	12	3	5	0.09	5.1	9	20	1
91	3	1	14	3	6	0.10	5.2	10	21	1
94	2	1	11	3	4	0.09	5.0	9	19	1
95	2	1	12	3	5	0.09	5.0	9	19	1
96	2	1	12	3	5	0.09	5.0	9	20	1
97	3	1	13	3	5	0.09	5.1	9	20	1
98	3	1	13	3	5	0.10	5.1	9	20	1
99	3	1	14	3	5	0.10	5.1	10	20	1
100	3	1	14	4	6	0.11	5.2	10	21	1
101	3	1	17	3	6	0.11	5.1	10	20	1
102	3	1	15	3	5	0.10	5.1	9	20	1
103	2	1	13	3	5	0.10	5.0	9	19	1
104	2	1	13	3	4	0.09	5.0	9	19	1
105	2	1	13	3	4	0.09	5.0	9	19	1
106	2	1	14	3	5	0.09	5.0	9	19	1
107	3	1	16	3	5	0.10	5.1	9	20	1
109	2	1	10	2	4	0.08	4.9	9	18	1
110	2	0	9	2	4	0.08	4.9	8	18	1
111	2	1	11	2	4	0.09	4.9	9	19	1
112	2	1	11	2	4	0.08	4.9	9	18	1
113	2	1	11	3	4	0.09	4.9	9	19	1
119	3	1	16	4	6	0.11	5.2	10	21	1
149	5	1	20	8	14	0.28	6.2	17	34	1
160	5	1	20	8	14	0.26	6.2	17	33	1

	PΝ	/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ing the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
		'	'		Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
162	5	1	20	8	14	0.27	6.3	17	34	1
168	5	1	20	7	14	0.27	6.2	17	33	1
171	1	0	6	1	2	0.05	4.6	7	16	1
180	3	1	13	3	5	0.09	5.2	10	21	1
181	3	1	13	3	4	0.09	5.2	10	21	1
182	3	1	12	3	4	0.09	5.2	10	21	1
183	3	1	12	2	4	0.09	5.1	10	20	1
186	3	1	10	2	4	0.08	5.0	9	20	1
187	3	1	10	2	4	0.07	5.0	9	19	1
188	2	0	9	2	3	0.07	5.0	9	19	1
189	2	1	9	2	4	0.07	5.0	9	19	1
190	2	0	8	2	3	0.07	5.0	9	19	1
191	2	0	8	2	3	0.07	5.0	9	19	1
192	2	0	8	2	4	0.07	5.0	9	19	1
194	2	0	8	2	3	0.08	4.9	9	18	1
195	2	1	9	2	4	0.08	5.0	9	19	1
196	2	0	8	2	3	0.08	4.9	9	18	1
200	2	0	8	2	3	0.08	4.9	9	18	1
202	2	0	9	2	4	0.09	4.9	9	18	1
203	2	1	10	2	4	0.09	4.9	9	19	1
204	2	1	11	2	4	0.09	4.9	9	19	1
206	2	0	10	2	4	0.09	4.9	8	18	1
207	1	0	8	2	3	0.08	4.8	8	17	1
208	1	0	6	2	3	0.07	4.7	8	17	1
209	1	0	6	2	3	0.07	4.7	8	17	1
210	1	0	6	1	2	0.06	4.7	7	17	1
217	2	0	8	2	3	0.07	4.8	8	17	1
218	1	0	7	2	3	0.06	4.7	8	17	1
219	2	0	8	2	3	0.08	4.8	8	18	1
220	1	0	6	2	3	0.07	4.7	8	17	1
222	2	0	10	2	4	0.09	4.9	8	18	1
223	2	1	12	2	4	0.09	4.9	9	19	1
224	2	1	10	3	4	0.09	5.0	9	19	1
226	2	1	10	3	4	0.09	5.0	9	19	1
227	2	1	10	3	4	0.08	5.0	9	19	1
229	2	1	11	3	4	0.08	5.0	9	19	1
230	2	1	11	3	4	0.08	5.0	9	20	1
231	2	1	11	3	4	0.08	5.0	9	19	1
232	2	1	10	3	4	0.08	5.0	9	19	1
233	2	1	10	3	4	0.07	5.0	9	19	1
234	2	1	10	3	4	0.07	5.0	9	19	1
235	2	1	9	2	4	0.07	5.0	9	19	1
236	2	1	9	3	4	0.07	5.1	9	20	1
237	3	1	10	3	4	0.07	5.1	10	20	1
238	3	1	10	3	4	0.07	5.1	10	20	1

	PN	/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolark		Complex Modificat	cincorporation	ting the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
					Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
255	3	1	15	3	6	0.12	5.2	11	22	1
256	3	1	14	3	6	0.13	5.3	11	23	1
258	4	1	16	4	7	0.15	5.4	12	24	1
300	4	1	15	4	8	0.19	5.6	12	24	1
303	4	1	14	4	6	0.14	5.4	11	23	1
305	3	1	14	3	5	0.12	5.3	11	22	1
306	3	1	13	3	5	0.11	5.2	10	21	1
307	3	1	13	3	4	0.11	5.2	10	21	1
308	3	1	12	3	4	0.11	5.2	10	21	1
309	3	1	12	3	5	0.14	5.2	10	21	1
310	3	1	12	3	5	0.16	5.3	10	22	1
312	3	1	12	3	6	0.19	5.3	11	22	1
313	3	1	12	3	5	0.18	5.3	10	22	1
314	3	1	12	3	6	0.21	5.3	11	22	1
315	3	1	13	4	6	0.23	5.4	11	23	1
316	3	1	14	4	7	0.24	5.4	11	23	1
317	4	1	15	4	8	0.25	5.5	12	24	1
11 (a)	2	0	7	0	1	0.01	4.6	7	17	1
11 (b)	1	0	6	0	1	0.01	4.6	7	16	1
11 (c)	1	0	7	1	1	0.01	4.6	7	17	1
184 (a)	3	1	11	3	4	0.08	5.1	10	20	1
184 (b)	3	1	11	2	4	0.08	5.1	10	20	1
201 (a)	2	0	8	2	3	0.09	4.9	8	18	1
201 (b)	2	0	9	2	4	0.09	4.9	9	18	1
41 (a)	3	1	17	3	6	0.10	5.1	9	20	1
41 (b)	2	1	10	3	4	0.08	5.0	9	19	1
46B	7	1	28	8	16	0.31	6.5	19	37	1
400	,		20	0		wned receptors		13	37	1
5	13	4	54	18	34	0.63	8	27	53	1
20	8	3	32	12	23	0.40	7	20	41	1
21	6	2	26	9	18	0.33	7	18	36	1
22	6	2	23	8	14	0.26	6	16	32	1
23	5	1	19	6	12	0.20	6	14	29	1
25	9	3	38	12	23	0.21	7	21	41	1
28	8	2	36	10	19	0.39	7	17	34	1
30	6	2	28	8	14	0.29	6	14	29	1
31	10	3	49	14	26	0.20	7	21	41	1
32	3	0	11	1	20	0.41	5	7	16	1
35	3	1	17	4	7	0.03	5	10	22	1
36	14	5	74	24	44	0.11	9	31	60	1
41	5	1	19	6	11	0.67	6	14	29	1
41	3	1	13	2	4	0.21	5	9	19	1
47	1	0	5	0	1	0.07	4	6	15	1
48	9	2	40			0.02	7			1
				10	19			18	36	
51	4	1	19	2	4	0.07	5	9	18	1

		/I _{2.5}		VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ting the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
	25	_	50		- All	quality impact	criteria 8	25	90	4
52	1	0	5	0	0	0.00	4	6	14	1
58	4	1	17	4	7	0.11	6	12	23	1
59	3	1	13	4	6	0.09	5	11	22	1
63	4	1	17	5	9	0.15	6	13	26	1
64	4	1	17	5	8	0.15	6	13	25	1
69	1	0	7	0	0	0.00	4	6	15	1
74	4	1	14	3	5	0.09	5	11	22	1
76	3	1	13	3	5	0.08	5	10	21	1
77	3	1	13	3	5	0.09	5	11	22	1
78	3	1	11	3	4	0.08	5	10	21	1
81	3	1	11	3	5	0.08	5	10	21	1
152	5	1	21	7	14	0.24	6	17	33	1
153	5	1	20	7	14	0.24	6	17	33	1
157	5	1	20	7	14	0.25	6	17	33	1
158	5	1	21	7	13	0.23	6	16	32	1
159	5	1	20	7	14	0.26	6	17	33	1
161	5	1	20	7	14	0.26	6	17	33	1
165	5	1	21	8	15	0.27	6	17	34	1
169	6	1	26	7	12	0.21	6	14	29	1
170	4	1	15	4	8	0.18	6	12	25	1
172	4	1	16	4	7	0.13	6	12	24	1
173	6	1	26	7	13	0.24	6	15	30	1
175	4	1	15	4	7	0.14	5	12	23	1
176	4	1	15	4	6	0.12	5	11	23	1
177	4	1	15	3	6	0.11	5	11	22	1
239	3	1	11	3	4	0.07	5	10	20	1
240	3	1	12	3	4	0.08	5	10	21	1
241	3	1	13	3	5	0.08	5	10	21	1
253	3	0	10	1	2	0.04	5	10	20	1
254	3	0	13	2	4	0.09	5	10	21	1
257	4	1	17	4	7	0.15	5	12	24	1
301	3	1	14	4	7	0.18	6	12	24	1
302	3	1	14	4	7	0.16	5	11	23	1
319	1	0	5	1	1	0.03	5	7	16	1
319	1	0	4	1	1	0.03	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	2	0	0	0.01	5	7	15	1
319	1	0	2	0	0	0.01	5	10	21	1
320	4	1	16	4	8	0.15	5	12	24	1
41C	5	1	20	7	14	0.26	6	17	33	1
29c	8	2	38	9	16	0.27	6	15	31	1


Table D-3: Modelling predictions for 2026

		/l _{2.5}		VI 10	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		iviooiard		Complex /lodificat	cincorporation	ing the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.		Λ:		ovitovio.			
	25	_	50	_	- Air	quality impact	criteria 8	25	90	4
					Privately-	owned recepto			30	
9	7	2	33	7	14	0.28	6	15	30	1
26	5	1	25	7	12	0.23	6	14	29	1
37	2	0	9	1	1	0.03	5	7	16	1
39	1	0	6	1	1	0.02	5	7	15	1
40	2	0	8	1	1	0.02	5	7	16	1
60	2	0	9	1	2	0.05	5	8	18	1
61	2	0	9	1	2	0.05	5	8	18	1
66	6	1	27	6	10	0.17	6	15	28	1
70	3	1	14	3	6	0.12	5	10	22	1
75	2	0	10	2	4	0.08	5	9	20	1
79	2	0	9	2	3	0.06	5	8	18	1
80	2	0	9	1	2	0.05	5	8	18	1
82	2	0	9	1	2	0.05	5	8	18	1
83	2	0	9	1	2	0.04	5	8	17	1
84	2	0	9	1	2	0.04	5	8	17	1
86	2	0	9	1	1	0.03	5	7	16	1
87	2	0	9	1	2	0.04	5	8	17	1
88	2	0	9	1	2	0.03	5	7	17	1
89	2	0	9	1	1	0.03	5	7	16	1
90	2	0	8	1	1	0.03	5	7	16	1
91	2	0	9	1	1	0.03	5	7	16	1
94	2	0	8	1	1	0.02	5	7	16	1
95	2	0	8	1	1	0.02	5	7	16	1
96	2	0	8	1	1	0.02	5	7	16	1
97	2	0	8	1	1	0.03	5	7	16	1
98	2	0	8	1	1	0.02	5	7	16	1
99	2	0	8	1	1	0.02	5	7	16	1
100	2	0	8	1	1	0.03	5	7	16	1
101	2	0	7	1	1	0.02	5	7	16	1
102	2	0	7	1	1	0.02	5	7	16	1
103	2	0	7	1	1	0.02	5	7	16	1
104	2	0	7	1	1	0.02	5	7	15	1
105	2	0	7	1	1	0.02	5	7	15	1
106	2	0	7	1	1	0.02	5	7	15	1
107	2	0	7	1	1	0.02	5	7	16	1
109	2	0	7	0	1	0.02	5	7	15	1
110	1	0	6	0	1	0.02	5	7	15	1
111	2	0	7	1	1	0.02	5	7	15	1
112	2	0	7	1	1	0.02	5	7	15	1
113	2	0	7	1	1	0.02	5	7	15	1
119 149	2	0	8	1 6	10	0.02	5	7	16 29	1
	6	1	28	6		0.18	6	15		1
160	6	1	27	ט	10	0.18	6	15	29	1

	PΝ	/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolark		Complex Modificat	cincorporation	ting the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
					Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
162	6	1	27	6	10	0.17	6	15	29	1
168	6	1	27	6	10	0.18	6	15	29	1
171	1	0	4	0	1	0.02	4	6	15	1
180	2	0	11	2	4	0.10	5	9	20	1
181	2	0	11	2	4	0.10	5	9	19	1
182	2	0	11	2	4	0.10	5	9	19	1
183	2	0	11	2	3	0.10	5	9	19	1
186	2	0	10	1	2	0.07	5	8	18	1
187	2	0	10	1	2	0.06	5	8	17	1
188	2	0	10	1	2	0.06	5	8	17	1
189	2	0	9	1	2	0.05	5	8	17	1
190	2	0	9	1	2	0.05	5	8	17	1
191	2	0	9	1	2	0.04	5	7	17	1
192	2	0	9	1	2	0.04	5	7	17	1
194	2	0	8	1	1	0.04	5	7	16	1
195	2	0	9	1	1	0.03	5	7	16	1
196	2	0	8	1	1	0.03	5	7	16	1
200	2	0	7	1	1	0.03	5	7	16	1
202	2	0	7	1	1	0.02	5	7	16	1
203	2	0	7	1	1	0.02	5	7	16	1
204	2	0	7	1	1	0.02	5	7	16	1
206	1	0	6	1	1	0.02	5	7	15	1
207	1	0	5	0	1	0.02	4	6	15	1
208	1	0	5	0	1	0.02	4	6	15	1
209	1	0	5	0	1	0.02	4	6	15	1
210	1	0	4	0	1	0.02	4	6	15	1
217	1	0	5	0	1	0.02	4	6	15	1
218	1	0	5	0	1	0.02	4	6	15	1
219	1	0	5	0	1	0.02	4	6	15	1
220	1	0	5	0	1	0.02	4	6	15	1
222	2	0	7	0	1	0.02	5	7	15	1
223	2	0	7	1	1	0.02	5	7	15	1
224	2	0	8	1	1	0.03	5	7	16	1
226	2	0	8	1	1	0.03	5	7	16	1
227	2	0	8	1	1	0.03	5	7	16	1
229	2	0	9	1	1	0.03	5	7	16	1
230	2	0	9	1	1	0.03	5	7	16	1
231	2	0	9	1	1	0.03	5	7	16	1
232	2	0	9	1	2	0.03	5	7	17	1
233	2	0	9	1	2	0.04	5	7	17	1
234	2	0	9	1	2	0.04	5	8	17	1
235	2	0	9	1	2	0.04	5	8	17	1
236	2	0	9	1	2	0.04	5	8	17	1
237	2	0	9	1	2	0.04	5	8	17	1
238	2	0	9	1	2	0.05	5	8	18	1

	PN (µg,	/l _{2.5} /m³\		VI ₁₀ /m³)	TSP (μg/m³)	DD (g/m²/mth)	PM _{2.5} (μg/m³)	PM ₁₀ (μg/m³)	TSP (μg/m³)	DD (g/m²/mth)
			en Coal	Complex	incorporat		(μg/111 /		l impact	(8/111 /111111)
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Aodificat Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
					Air	quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
255	3	0	12	2	4	0.08	5	10	20	1
256	3	1	14	3	4	0.09	5	10	20	1
258	3	1	15	3	5	0.09	5	10	21	1
300	3	1	13	3	5	0.15	5	10	22	1
303	3	1	12	3	5	0.13	5	10	21	1
305	2	1	12	2	4	0.12	5	9	20	1
306	2	1	11	2	4	0.12	5	9	20	1
307	2	0	11	2	4	0.12	5	9	20	1
308	2	0	11	2	4	0.12	5	9	19	1
309	2	0	11	2	4	0.15	5	9	20	1
310	2	1	11	2	4	0.15	5	9	20	1
312	3	1	12	2	4	0.16	5	9	20	1
313	3	1	13	2	4	0.17	5	9	20	1
314	3	1	13	3	5	0.18	5	10	20	1
315	3	1	13	3	5	0.19	5	10	21	1
316	3	1	14	3	5	0.19	5	10	21	1
317	3	1	14	3	6	0.19	5	10	21	1
11 (a)	2	0	7	0	1	0.01	5	7	16	1
11 (b)	1	0	6	0	1	0.01	5	7	16	1
11 (c)	2	0	8	1	1	0.01	5	7	17	1
184 (a)	2	0	10	2	3	0.07	5	8	18	1
184 (b)	2	0	10	2	3	0.07	5	8	18	1
201 (a)	2	0	7	1	1	0.03	5	7	16	1
201 (b)	2	0	7	1	1	0.02	5	7	16	1
41 (a)	2	0	7	1	1	0.02	5	7	16	1
41 (b)	2	0	8	1	1	0.03	5	7	16	1
46B	7	1	34	6	10	0.17	6	16	30	1
		_				wned receptors				_
5	7	2	33	10	18	0.39	7	18	35	1
20	5	1	22	7	12	0.21	6	15	29	1
21	4	1	20	6	10	0.19	6	13	27	1
22	4	1	18	5	9	0.17	6	13	26	1
23	3	1	16	4	8	0.15	6	12	24	1
25	7	2	33	9	15	0.30	6	17	33	1
28	2	0	9	1	2	0.04	5	8	17	1
30	2	0	8	1	2	0.04	5	8	17	1
31	2	0	9	1	2	0.04	5	8	17	1
32	1	0	5	0	0	0.01	4	6	15	1
35	1	0	5	1	1	0.02	5	7	16	1
36	3	0	14	2	3	0.05	5	8	18	1
41	3	1	16	4	8	0.14	6	12	24	1
47	1	0	5	0	1	0.01	4	6	15	1
48	1	0	3	0	0	0.01	4	6	14	1
49	5	1	24	7	12	0.24	6	14	29	1
51	1	0	6	0	1	0.24	4	6	15	1

	PN	/l _{2.5}	PI	VI ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(μg/m³)	(g/m²/mth)	(μg/m³)	(μg/m³)	(μg/m³)	(g/m²/mth)
		Moolarb		Complex Modificat	cincorporat	ing the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
	25	_	50	_	All	quality impact	criteria 8	25	90	4
52	1	0	5	0	0	0.00	4	6	14	1
58	2	1	12	3	5	0.11	5	10	21	1
59	2	0	10	2	3	0.07	5	9	19	1
63	3	1	14	4	6	0.13	5	11	23	1
64	3	1	14	3	6	0.12	5	11	22	1
69	1	0	6	0	0	0.00	4	6	15	1
74	2	1	11	3	4	0.10	5	10	20	1
76	2	0	10	2	3	0.07	5	9	19	1
77	2	0	9	2	3	0.07	5	9	19	1
78	2	0	9	2	3	0.06	5	8	18	1
81	2	0	9	1	2	0.05	5	8	18	1
152	6	1	26	6	9	0.16	6	15	28	1
153	6	1	26	6	9	0.16	6	15	28	1
157	6	1	27	6	10	0.16	6	15	28	1
158	5	1	24	6	9	0.16	6	14	27	1
159	6	1	27	6	10	0.17	6	15	28	1
161	6	1	27	6	10	0.17	6	15	28	1
165	6	1	27	6	10	0.16	6	15	29	1
169	4	1	20	5	9	0.16	6	13	25	1
170	3	1	13	3	6	0.14	5	10	22	1
172	3	1	13	3	6	0.12	5	10	22	1
173	4	1	20	5	9	0.19	6	12	25	1
175	3	1	12	3	5	0.12	5	10	21	1
176	3	1	13	3	5	0.12	5	10	21	1
177	3	1	13	3	5	0.11	5	10	21	1
239	2	0	9	1	2	0.05	5	8	18	1
240	2	0	10	2	3	0.07	5	8	18	1
241	2	0	10	2	3	0.08	5	9	19	1
253	3	0	11	1	1	0.03	5	9	19	1
254	3	0	12	2	3	0.06	5	9	19	1
257	3	1	14	3	5	0.09	5	10	21	1
301	3	1	13	3	5	0.14	5	10	21	1
302	3	1	12	3	5	0.14	5	10	21	1
319	1	0	4	0	1	0.02	5	8	17	1
319	1	0	4	0	1	0.02	5	9	19	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	0	0.01	5	7	15	1
319	1	0	3	0	0	0.01	5	8	18	1
320	3	1	15	3	6	0.12	5	10	22	1
41C	6	1	27	6	10	0.17	6	15	28	1
2 9c	2	0	7	1	1	0.02	5	7	16	1

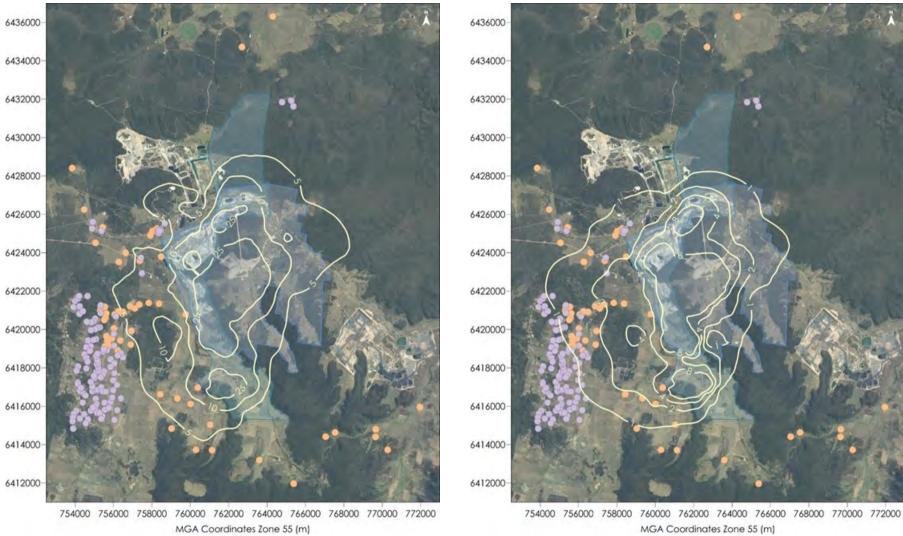


Figure E-1: Predicted maximum 24-hour average PM $_{2.5}$ concentrations due to emissions from the Modification in 2019 ($\mu g/m^3$)

Figure E-2: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification in 2019 ($\mu g/m^3$)

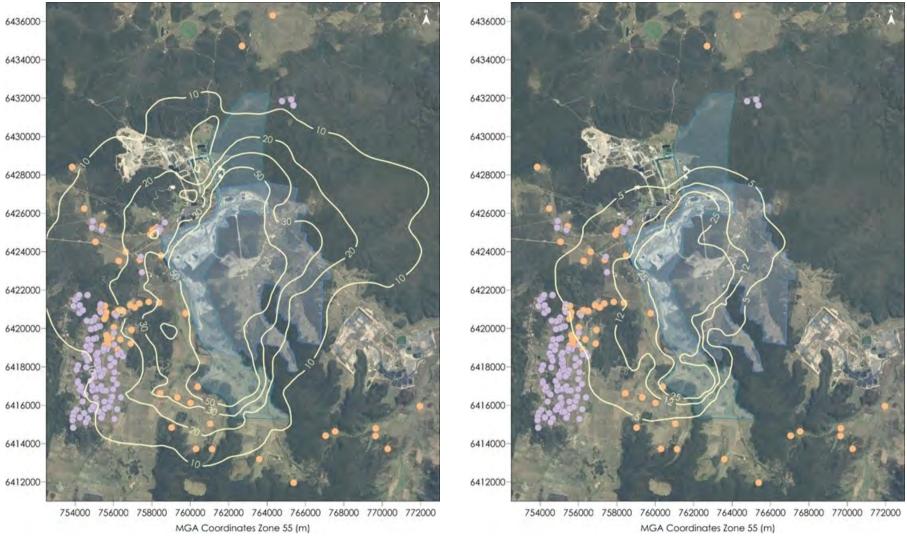


Figure E-3: Predicted maximum 24-hour average PM_{10} concentrations due to emissions from the Modification in 2019 ($\mu g/m^3$)

Figure E-4: Predicted annual average PM_{10} concentrations due to emissions from the Modification in 2019 ($\mu g/m^3$)

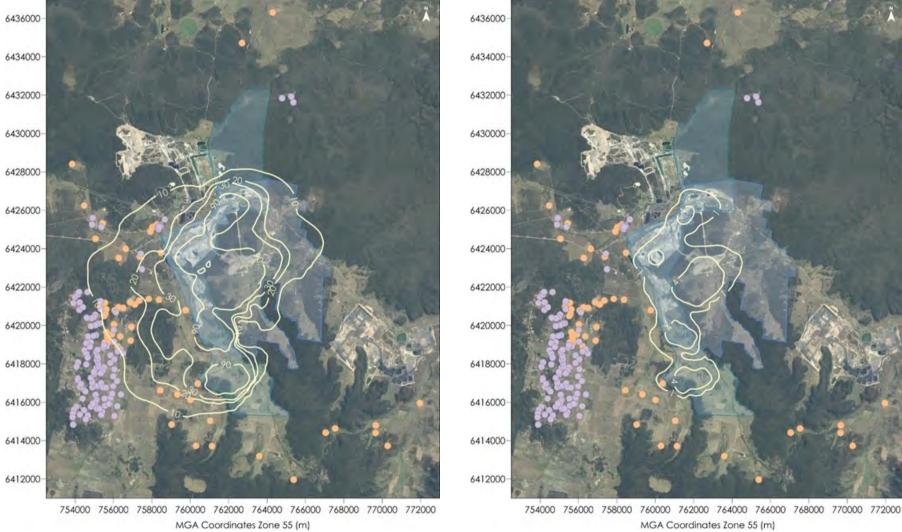


Figure E-5: Predicted annual average TSP concentrations due to emissions from the Modification in 2019 ($\mu g/m^3$)

Figure E-6: Predicted annual average dust deposition levels due to emissions from the Modification in 2019 (g/m²/month)

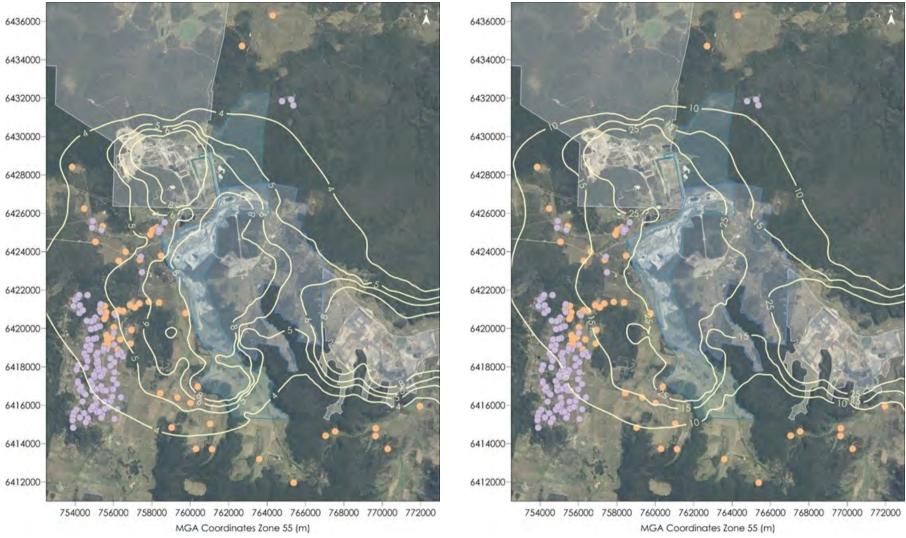


Figure E-7: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification and other sources in 2019 ($\mu g/m^3$)

Figure E-8: Predicted annual average PM_{10} concentrations due to emissions from the Modification and other sources in 2019 ($\mu g/m^3$)

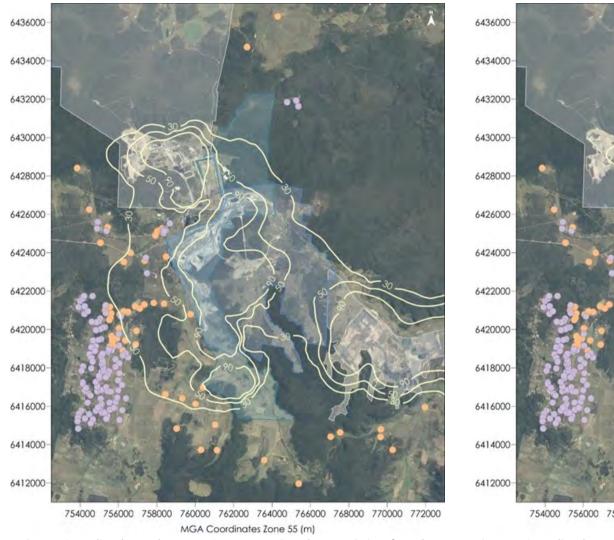


Figure E-9: Predicted annual average TSP concentrations due to emissions from the Modification and other sources in 2019 (μg/m³)

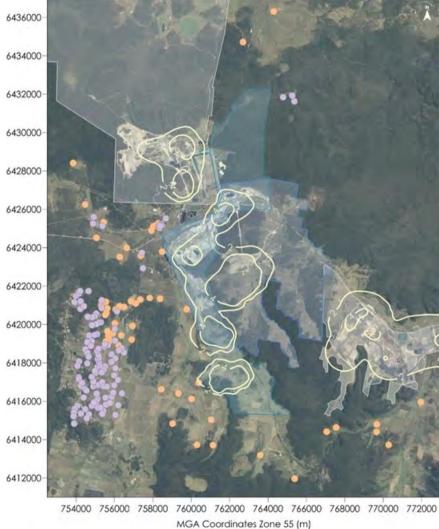


Figure E-10: Predicted annual average dust deposition levels due to emissions from the Modification and other sources in 2019 (g/m²/month)

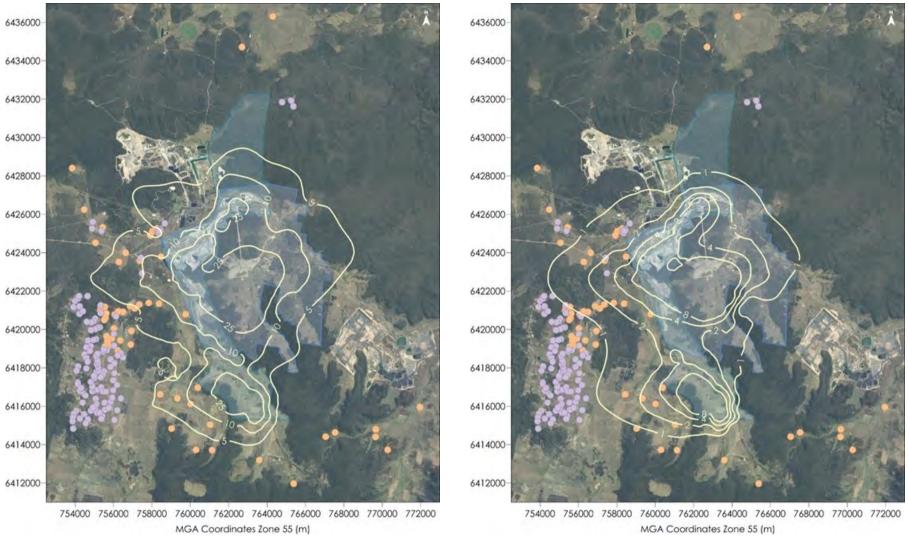


Figure E-11: Predicted maximum 24-hour average $PM_{2.5}$ concentrations due to emissions from the Modification in 2021 ($\mu g/m^3$)

Figure E-12: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification in 2021 ($\mu g/m^3$)

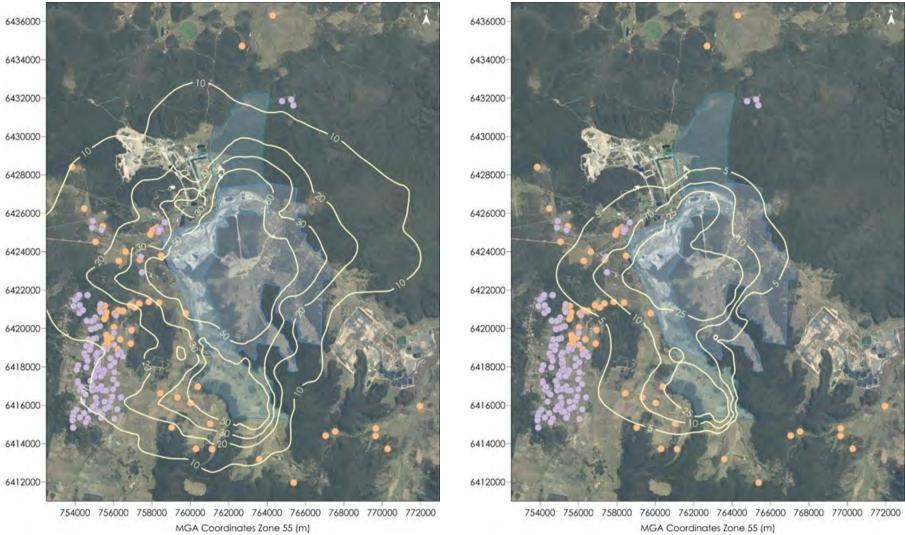


Figure E-13: Predicted maximum 24-hour average PM_{10} concentrations due to emissions from the Modification in 2021 ($\mu g/m^3$)

Figure E-14: Predicted annual average PM_{10} concentrations due to emissions from the Modification in 2021 ($\mu g/m^3$)

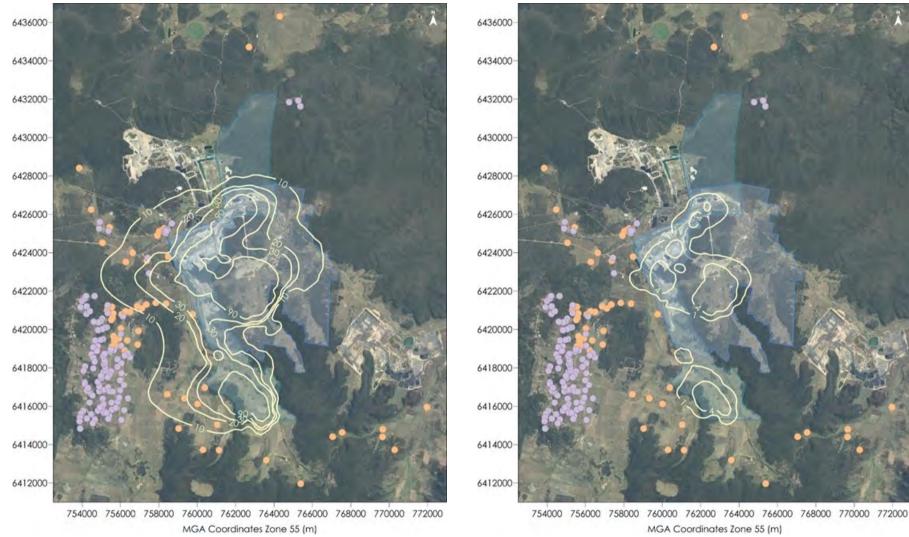


Figure E-15: Predicted annual average TSP concentrations due to emissions from the Modification in 2021 ($\mu g/m^3$)

Figure E-16: Predicted annual average dust deposition levels due to emissions from the Modification in 2021 (g/m²/month)

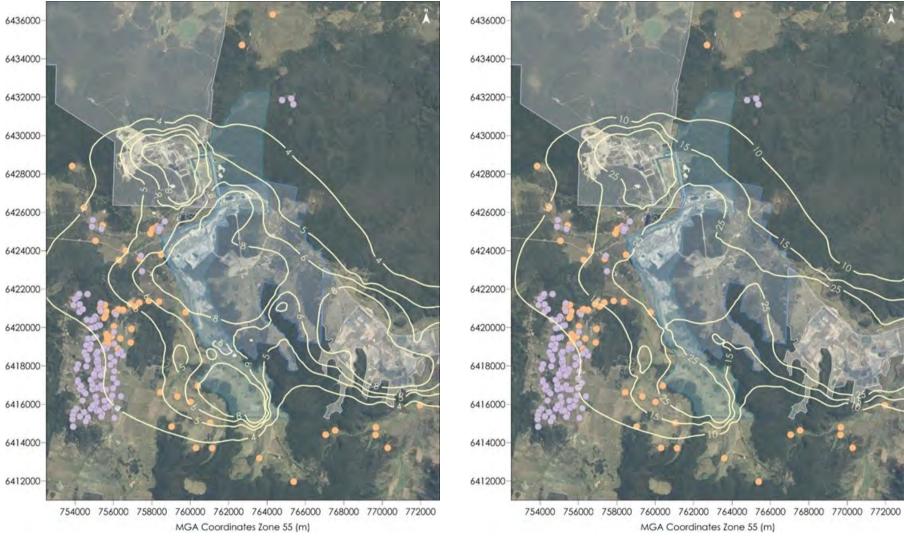


Figure E-17: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification and other sources in 2021 ($\mu g/m^3$)

Figure E-18: Predicted annual average PM_{10} concentrations due to emissions from the Modification and other sources in 2021 ($\mu g/m^3$)

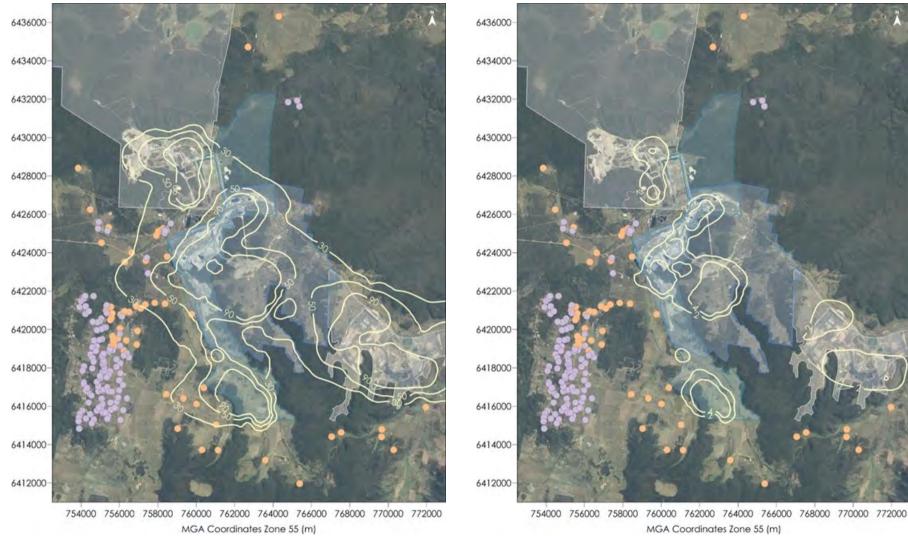


Figure E-19: Predicted annual average TSP concentrations due to emissions from the Modification and other sources in 2021 ($\mu g/m^3$)

Figure E-20: Predicted annual average dust deposition levels due to emissions from the Modification and other sources in 2021 (g/m²/month)

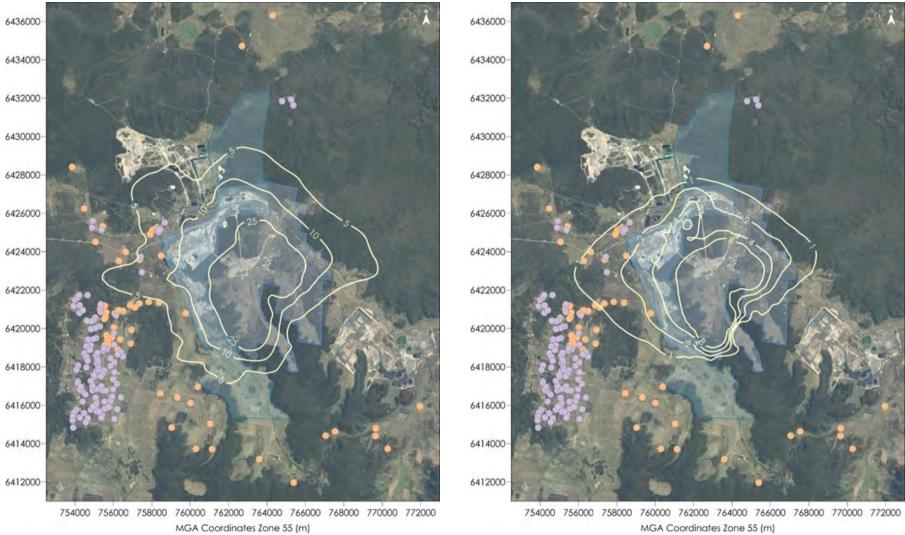


Figure E-21: Predicted maximum 24-hour average $PM_{2.5}$ concentrations due to emissions from the Modification in 2026 ($\mu g/m^3$)

Figure E-22: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification in 2026 ($\mu g/m^3$)

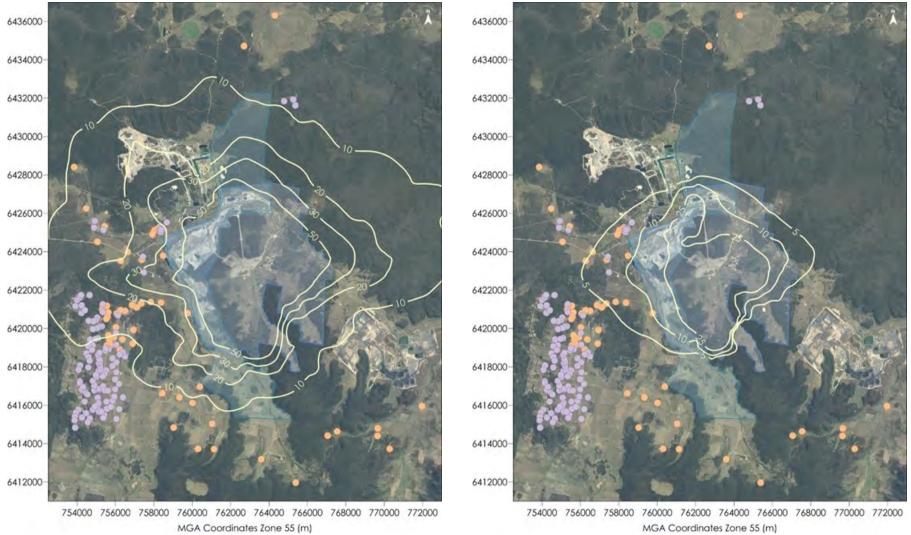


Figure E-23: Predicted maximum 24-hour average PM_{10} concentrations due to emissions from the Modification in 2026 ($\mu g/m^3$)

Figure E-24: Predicted annual average PM_{10} concentrations due to emissions from the Modification in 2026 ($\mu g/m^3$)

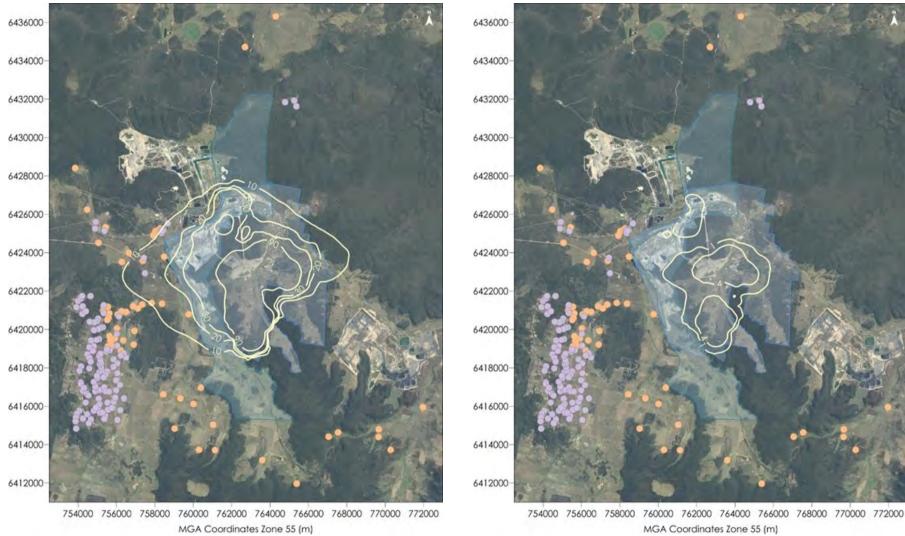


Figure E-25: Predicted annual average TSP concentrations due to emissions from the Modification in 2026 ($\mu g/m^3$)

Figure E-26: Predicted annual average dust deposition levels due to emissions from the Modification in 2026 (g/m²/month)

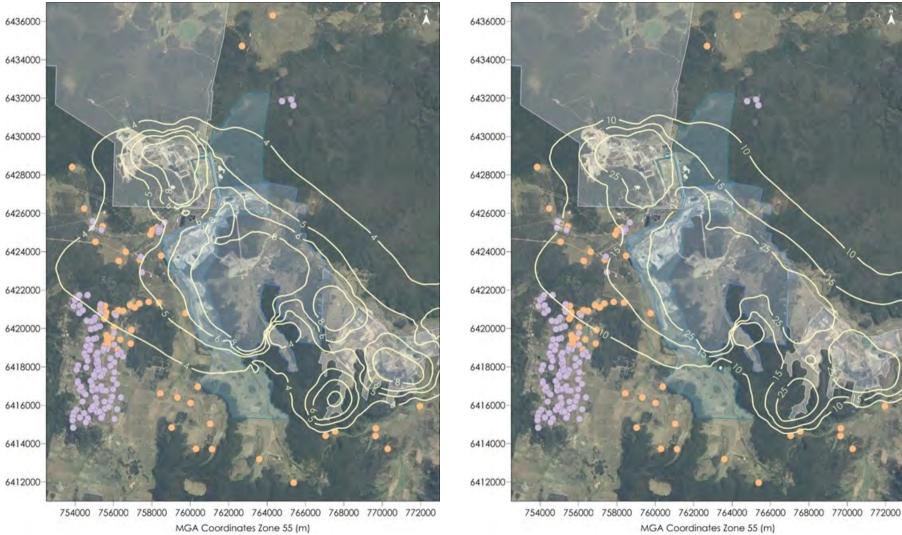


Figure E-27: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Modification and other sources in 2026 ($\mu g/m^3$)

Figure E-28: Predicted annual average PM_{10} concentrations due to emissions from the Modification and other sources in 2026 ($\mu g/m^3$)

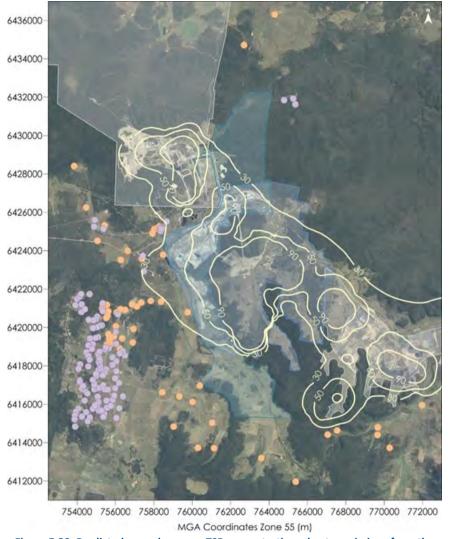


Figure E-29: Predicted annual average TSP concentrations due to emissions from the Modification and other sources in 2026 ($\mu g/m^3$)

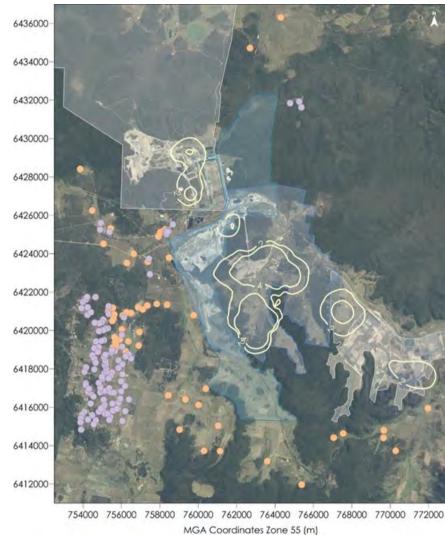


Figure E-30: Predicted annual average dust deposition levels due to emissions from the Modification and other sources in 2026 (g/m²/month)

Table F-1: 24-hour average PM₁₀ concentration (µg/m³) – Sensitive receptor location R9 in 2019

Ranked by Hi	ghest to Lowest		Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	15.1	60.8	27/04/2011	8.2	21.9	30.1	
4/04/2011	32.7	9.8	42.5	29/06/2011	9.6	20.1	29.7	
20/05/2011	32.2	2.3	34.5	30/06/2011	11.4	18.8	30.2	
27/06/2011	29.9	2.8	32.7	20/03/2011	7.9	18.7	26.6	
14/07/2011	29.1	1.3	30.4	5/04/2011	16.2	17.5	33.7	
28/01/2011	27.6	7.3	34.9	16/04/2011	5.6	17.5	23.1	
2/06/2011	27	16.7	43.7	6/04/2011	9.5	17.1	26.6	
19/05/2011	26.8	-0.6	26.2	26/04/2011	7.6	16.8	24.4	
29/01/2011	26.7	0.0	26.7	2/06/2011	27	16.7	43.7	
19/09/2011	26.3	0.9	27.2	17/04/2011	8.1	16.3	24.4	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Table F-2: 24-hour average PM₁₀ concentration (μg/m³) - Sensitive receptor location R26 in 2019

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	-3.0	42.7	14/06/2011	5.8	8.6	14.4	
4/04/2011	32.7	-6.0	26.7	21/08/2011	ND	7.8	7.8	
20/05/2011	32.2	-3.6	28.6	22/08/2011	ND	7.7	7.7	
27/06/2011	29.9	-2.4	27.5	13/06/2011	2.7	7.6	10.3	
14/07/2011	29.1	-4.7	24.4	20/08/2011	ND	7.4	7.4	
28/01/2011	27.6	-14.5	13.1	1/06/2011	10.5	6.8	17.3	
2/06/2011	27	3.1	30.1	11/06/2011	8.2	6.7	14.9	
19/05/2011	26.8	-6.1	20.7	16/04/2011	5.6	6.3	11.9	
29/01/2011	26.7	-19.1	7.6	25/09/2011	2.1	6.3	8.4	
19/09/2011	26.3	-10.1	16.2	15/06/2011	4.4	5.7	10.1	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND – No Data

Table F-3: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2019

	ghest to Lowest			Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	7.4	53.1	16/07/2011	ND	14.5	14.5	
4/04/2011	32.7	5.9	38.6	29/01/2011	26.7	13.4	40.1	
20/05/2011	32.2	3.4	35.6	29/03/2011	10.6	12.8	23.4	
27/06/2011	29.9	2.0	31.9	14/10/2011	9.1	12.3	21.4	
14/07/2011	29.1	2.4	31.5	26/10/2011	3.4	12.1	15.5	
28/01/2011	27.6	8.9	36.5	25/11/2011	ND	12.1	12.1	
2/06/2011	27	8.1	35.1	8/01/2011	10.7	12.0	22.7	
19/05/2011	26.8	5.7	32.5	29/05/2011	9.3	11.7	21.0	
29/01/2011	26.7	13.4	40.1	20/03/2011	7.9	11.5	19.4	
19/09/2011	26.3	5.4	31.7	13/10/2011	11.6	11.4	23.0	

Table F-4: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R40 in 2019

Ranked by H	lighest to Lowes	t Background	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
15/03/2011	45.7	9.9	55.6	26/10/2011	3.4	18.5	21.9	
28/02/2011	32.7	0.2	32.9	24/11/2011	1.8	13.6	15.4	
19/06/2011	32.2	0.0	32.2	23/11/2011	ND	13.4	13.4	
24/07/2011	29.9	2.0	31.9	27/10/2011	7.4	13.2	20.6	
13/06/2011	29.1	1.0	30.1	26/04/2011	7.6	12.0	19.6	
22/01/2011	27.6	5.4	33.0	9/12/2011	6.7	11.9	18.6	
17/08/2011	27	8.7	35.7	19/03/2011	5.9	11.6	17.5	
17/06/2011	26.8	0.7	27.5	18/03/2011	13.6	11.6	25.2	
4/03/2011	26.7	1.1	27.8	9/01/2011	12.2	11.3	23.5	
3/07/2011	26.3	2.3	28.6	29/01/2011	26.7	11.3	38.0	

ND – No Data

Table F-5: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R70 in 2019

Ranked by H	ighest to Lowes	t Background	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	14.2	59.9	2/06/2011	27	15.4	42.4	
4/04/2011	32.7	8.5	41.2	31/12/2011	10.3	14.7	25.0	
20/05/2011	32.2	6.4	38.6	3/09/2011	4.6	14.6	19.2	
27/06/2011	29.9	4.5	34.4	17/11/2011	3.8	14.5	18.3	
14/07/2011	29.1	3.9	33.0	29/06/2011	9.6	14.3	23.9	
28/01/2011	27.6	7.2	34.8	30/06/2011	11.4	14.3	25.7	
2/06/2011	27	15.4	42.4	28/06/2011	45.7	14.2	59.9	
19/05/2011	26.8	7.4	34.2	6/04/2011	9.5	14.1	23.6	
29/01/2011	26.7	6.2	32.9	8/04/2011	11.4	13.7	25.1	
19/09/2011	26.3	4.9	31.2	16/08/2011	ND	13.7	13.7	

Table F-6: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R168 in 2019

Ranked by Hi	ghest to Lowest	: Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	-4.2	41.5	19/09/2011	31.3	1.3	32.6	
4/04/2011	32.7	-3.0	29.7	21/12/2011	10.8	1.2	12.0	
20/05/2011	32.2	-3.7	28.5	30/05/2011	6.9	1.1	8.0	
27/06/2011	29.9	0.1	30.0	6/02/2011	5.8	0.9	6.7	
14/07/2011	29.1	-1.1	28.0	17/12/2011	12.8	0.7	13.5	
28/01/2011	27.6	-5.1	22.5	19/08/2011	2.3	0.6	2.9	
2/06/2011	27	-5.3	21.7	2/04/2011	13.1	0.6	13.7	
19/05/2011	26.8	-3.2	23.6	1/07/2011	13	0.6	13.6	
29/01/2011	26.7	-1.7	25.0	4/05/2011	10.3	0.4	10.7	
19/09/2011	26.3	1.3	27.6	30/11/2011	14.3	0.3	14.6	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Table F-7: 24-hour average PM₁₀ concentration (µg/m³) – Sensitive receptor location R9 in 2021

Ranked by Hi	ghest to Lowest		Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	29.6	75.3	27/04/2011	8.2	38.6	46.8	
4/04/2011	32.7	14.9	47.6	29/06/2011	9.6	36.1	45.7	
20/05/2011	32.2	7.6	39.8	20/03/2011	7.9	34.6	42.5	
27/06/2011	29.9	7.1	37.0	30/06/2011	11.4	32.4	43.8	
14/07/2011	29.1	5.2	34.3	26/04/2011	7.6	32.1	39.7	
28/01/2011	27.6	11.3	38.9	8/12/2011	3.8	30.0	33.8	
2/06/2011	27	29.3	56.3	16/07/2011	ND	30.0	30.0	
19/05/2011	26.8	5.2	32.0	28/06/2011	45.7	29.6	75.3	
29/01/2011	26.7	2.0	28.7	5/04/2011	16.2	29.6	45.8	
19/09/2011	26.3	0.7	27.0	2/06/2011	27	29.3	56.3	
23/09/2011	25.8	0.4	26.2	8/04/2011	11.4	29.1	40.5	
22/01/2011	25.4	-4.8	20.6	24/04/2011	15	28.6	43.6	
5/03/2011	24.4	18.9	43.3	6/04/2011	9.5	28.1	37.6	
19/01/2011	23.5	24.7	48.2	25/04/2011	9.3	27.6	36.9	
24/09/2011	23.5	-7.7	15.8	17/04/2011	8.1	27.4	35.5	
17/05/2011	22.8	4.1	26.9	23/02/2011	9	27.0	36.0	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND - No Data

Table F-8: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R26 in 2021

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	6.3	52.0	21/08/2011	ND	21.9	21.9	
4/04/2011	32.7	-3.5	29.2	1/06/2011	10.5	19.7	30.2	
20/05/2011	32.2	1.0	33.2	13/06/2011	2.7	19.5	22.2	
27/06/2011	29.9	1.1	31.0	28/04/2011	6.5	17.6	24.1	
14/07/2011	29.1	-2.2	26.9	16/04/2011	5.6	16.3	21.9	
28/01/2011	27.6	-14.6	13.0	2/06/2011	27	16.1	43.1	
2/06/2011	27	16.1	43.1	25/09/2011	2.1	15.8	17.9	
19/05/2011	26.8	-1.0	25.8	20/08/2011	ND	15.3	15.3	
29/01/2011	26.7	-19.4	7.3	17/04/2011	8.1	13.9	22.0	
19/09/2011	26.3	-11.6	14.7	22/08/2011	ND	12.9	12.9	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND – No Data

Table F-9: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2021

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	9.9	55.6	29/03/2011	10.6	14.4	25.0	
4/04/2011	32.7	5.9	38.6	16/07/2011	ND	12.9	12.9	
20/05/2011	32.2	3.5	35.7	20/03/2011	7.9	11.7	19.6	
27/06/2011	29.9	2.5	32.4	14/10/2011	9.1	11.5	20.6	
14/07/2011	29.1	2.3	31.4	29/01/2011	26.7	11.5	38.2	
28/01/2011	27.6	5.3	32.9	29/06/2011	9.6	11.4	21.0	
2/06/2011	27	11.1	38.1	27/04/2011	8.2	11.3	19.5	
19/05/2011	26.8	3.7	30.5	2/06/2011	27	11.1	38.1	
29/01/2011	26.7	11.5	38.2	4/01/2011	4.8	11.0	15.8	
19/09/2011	26.3	3.2	29.5	30/06/2011	11.4	10.4	21.8	

Table F-10: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R40 in 2021

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
15/03/2011	45.7	6.0	51.7	26/10/2011	3.4	18.4	21.8	
28/02/2011	32.7	0.2	32.9	16/07/2011	ND	16.2	16.2	
19/06/2011	32.2	0.0	32.2	29/01/2011	26.7	15.6	42.3	
24/07/2011	29.9	1.9	31.8	14/10/2011	9.1	14.6	23.7	
13/06/2011	29.1	1.4	30.5	8/01/2011	10.7	14.2	24.9	
22/01/2011	27.6	4.3	31.9	25/11/2011	ND	13.6	13.6	
17/08/2011	27	8.0	35.0	27/10/2011	7.4	13.3	20.7	
17/06/2011	26.8	0.5	27.3	20/03/2011	7.9	13.2	21.1	
4/03/2011	26.7	1.1	27.8	29/03/2011	10.6	12.8	23.4	
3/07/2011	26.3	2.3	28.6	20/01/2011	20.1	12.8	32.9	

ND – No Data

Table F-11: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R70 in 2021

Ranked by Hi	ghest to Lowest		Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	5.2	50.9	17/11/2011	3.8	15.2	19.0	
4/04/2011	32.7	4.3	37.0	15/03/2011	8.2	11.9	20.1	
20/05/2011	32.2	4.5	36.7	24/12/2011	7.6	11.0	18.6	
27/06/2011	29.9	2.7	32.6	24/09/2011	23.5	10.9	34.4	
14/07/2011	29.1	2.3	31.4	21/12/2011	12	10.7	22.7	
28/01/2011	27.6	9.0	36.6	17/12/2011	10.4	10.6	21.0	
2/06/2011	27	5.4	32.4	4/01/2011	4.8	9.8	14.6	
19/05/2011	26.8	5.4	32.2	17/03/2011	16.4	9.4	25.8	
29/01/2011	26.7	7.9	34.6	26/09/2011	4.5	9.2	13.7	
19/09/2011	26.3	3.5	29.8	15/08/2011	ND	9.0	9.0	

Table F-12: 24-hour average PM₁₀ concentration (µg/m³) - Sensitive receptor location R168 in 2021

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	-1.9	43.8	30/05/2011	6.9	4.8	11.7	
4/04/2011	32.7	-1.0	31.7	28/04/2011	8.7	4.3	13.0	
20/05/2011	32.2	-2.6	29.6	1/07/2011	13	4.2	17.2	
27/06/2011	29.9	1.5	31.4	12/06/2011	7.3	2.5	9.8	
14/07/2011	29.1	0.1	29.2	6/02/2011	5.8	2.1	7.9	
28/01/2011	27.6	-5.6	22.0	3/05/2011	10.9	1.9	12.8	
2/06/2011	27	-1.2	25.8	26/09/2011	8.9	1.8	10.7	
19/05/2011	26.8	-1.5	25.3	4/05/2011	10.3	1.7	12.0	
29/01/2011	26.7	-2.4	24.3	23/07/2011	4	1.7	5.7	
19/09/2011	26.3	1.2	27.5	27/06/2011	14.5	1.5	16.0	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Table F-13: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R9 in 2026

Ranked by Hi	Ranked by Highest to Lowest Background Concentration				Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level		
28/06/2011	45.7	8.7	54.4	16/07/2011	ND	30.6	30.6		
4/04/2011	32.7	5.2	37.9	27/10/2011	7.4	18.9	26.3		
20/05/2011	32.2	-5.2	27.0	9/01/2011	12.2	18.7	30.9		
27/06/2011	29.9	-2.2	27.7	26/10/2011	3.4	18.6	22.0		
14/07/2011	29.1	-5.9	23.2	23/02/2011	9	18.0	27.0		
28/01/2011	27.6	1.9	29.5	24/11/2011	1.8	17.7	19.5		
2/06/2011	27	8.5	35.5	25/11/2011	ND	17.6	17.6		
19/05/2011	26.8	-7.3	19.5	7/12/2011	6.5	17.5	24.0		
29/01/2011	26.7	4.3	31.0	5/12/2011	9.6	16.9	26.5		
19/09/2011	26.3	-2.7	23.6	27/03/2011	9.8	16.8	26.6		

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

ND - No Data

Table F-14: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R26 in 2026

Ranked by Highest to Lowest Background Concentration				Ranked by	anked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	-3.2	42.5	29/06/2011	9.6	8.0	17.6	
4/04/2011	32.7	-11.0	21.7	13/06/2011	2.7	7.6	10.3	
20/05/2011	32.2	-9.4	22.8	15/06/2011	4.4	6.9	11.3	
27/06/2011	29.9	-6.0	23.9	20/03/2011	7.9	6.5	14.4	
14/07/2011	29.1	-10.8	18.3	22/08/2011	ND	5.5	5.5	
28/01/2011	27.6	-16.9	10.7	8/12/2011	3.8	5.3	9.1	
2/06/2011	27	-5.9	21.1	27/04/2011	8.2	3.9	12.1	
19/05/2011	26.8	-10.2	16.6	2/10/2011	2.3	3.7	6.0	
29/01/2011	26.7	-19.1	7.6	26/04/2011	7.6	3.5	11.1	
19/09/2011	26.3	-14.0	12.3	20/08/2011	ND	3.2	3.2	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND - No Data

Table F-15: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2026

Ranked by Hi	Ranked by Highest to Lowest Background Concentration				Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level		
28/06/2011	45.7	0.8	46.5	17/11/2011	3.8	8.5	12.3		
4/04/2011	32.7	0.2	32.9	21/12/2011	12	4.6	16.6		
20/05/2011	32.2	0.7	32.9	24/09/2011	23.5	4.3	27.8		
27/06/2011	29.9	0.0	29.9	4/11/2011	9.2	3.8	13.0		
14/07/2011	29.1	0.5	29.6	23/11/2011	ND	3.6	3.6		
28/01/2011	27.6	1.5	29.1	18/03/2011	13.6	3.5	17.1		
2/06/2011	27	0.1	27.1	2/07/2011	10.2	3.4	13.6		
19/05/2011	26.8	1.7	28.5	3/11/2011	8.8	3.2	12.0		
29/01/2011	26.7	1.1	27.8	27/12/2011	6.4	3.2	9.6		
19/09/2011	26.3	2.6	28.9	14/12/2011	9.9	3.2	13.1		

Table F-16: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R40 in 2026

	ghest to Lowest				nked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
15/03/2011	45.7	2.1	47.8	17/11/2011	3.8	7.7	11.5	
28/02/2011	32.7	0.0	32.7	23/11/2011	ND	4.7	4.7	
19/06/2011	32.2	0.0	32.2	24/09/2011	23.5	3.8	27.3	
24/07/2011	29.9	0.0	29.9	18/03/2011	13.6	3.5	17.1	
13/06/2011	29.1	0.0	29.1	22/11/2011	ND	3.5	3.5	
22/01/2011	27.6	0.8	28.4	4/11/2011	9.2	3.3	12.5	
17/08/2011	27	1.3	28.3	21/12/2011	12	3.3	15.3	
17/06/2011	26.8	0.0	26.8	14/12/2011	9.9	3.0	12.9	
4/03/2011	26.7	0.1	26.8	2/07/2011	10.2	2.9	13.1	
3/07/2011	26.3	0.2	26.5	17/12/2011	10.4	2.9	13.3	

ND – No Data

Table F-17: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R70 in 2026

Ranked by Hi	Ranked by Highest to Lowest Background Concentration				anked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level		
28/06/2011	45.7	3.8	49.5	26/10/2011	3.4	13.7	17.1		
4/04/2011	32.7	4.1	36.8	29/01/2011	26.7	12.2	38.9		
20/05/2011	32.2	1.2	33.4	17/11/2011	3.8	12.0	15.8		
27/06/2011	29.9	0.3	30.2	25/11/2011	ND	11.9	11.9		
14/07/2011	29.1	0.5	29.6	8/01/2011	10.7	11.8	22.5		
28/01/2011	27.6	7.6	35.2	14/10/2011	9.1	11.8	20.9		
2/06/2011	27	2.4	29.4	27/10/2011	7.4	11.7	19.1		
19/05/2011	26.8	2.9	29.7	4/01/2011	4.8	11.6	16.4		
29/01/2011	26.7	12.2	38.9	9/12/2011	6.7	11.0	17.7		
19/09/2011	26.3	3.0	29.3	21/03/2011	14.3	10.9	25.2		

Table F-18: 24-hour average PM₁₀ concentration (μg/m³) – Sensitive receptor location R168 in 2026

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	2.2	47.9	28/04/2011	8.7	9.1	17.8	
4/04/2011	32.7	-2.7	30.0	21/08/2011	12.8	8.2	21.0	
20/05/2011	32.2	-6.2	26.0	1/07/2011	13	7.4	20.4	
27/06/2011	29.9	0.7	30.6	2/06/2011	21.5	6.6	28.1	
14/07/2011	29.1	-0.7	28.4	13/06/2011	8.3	6.2	14.5	
28/01/2011	27.6	-5.3	22.3	25/09/2011	4.2	6.1	10.3	
2/06/2011	27	6.6	33.6	29/04/2011	5.4	5.6	11.0	
19/05/2011	26.8	-3.0	23.8	22/08/2011	8.2	4.6	12.8	
29/01/2011	26.7	-5.4	21.3	16/04/2011	5.3	4.3	9.6	
19/09/2011	26.3	-2.8	23.5	12/06/2011	7.3	4.2	11.5	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.