

Appendix 3 Air Quality and Greenhouse Gas Assessments

South East Open Cut Project &

Modification to the
Existing ACP Consent

AIR QUALITY IMPACT ASSESSMENT

ASHTON SOUTH EAST OPEN CUT MINE

Wells Environmental Services for Ashton Coal Operations Limited

Job No: 2886

23 October 2009

PROJECT TITLE: ASHTON SOUTH EAST OPEN CUT MINE

JOB NUMBER: 2886

PREPARED FOR: Jonathan Berry

Wells Environmental Services for Ashton Coal

Operations Limited

PREPARED BY:Judith Cox/Francine Triffett

REVIEWED BY: Aleks Todoroski

DISCLAIMER & COPYRIGHT: This report is subject to the copyright

statement located at www.paeholmes.com ©

PAEHolmes a Division of Queensland Environment Pty Ltd ABN 86 127 101 642

DOCUMENT CONTROL			
VERSION	DATE	PREPARED BY	REVIEWED BY
02 Working Draft	01.07.09	Judith Cox/Francine Triffett	Judith Cox
02 Working Draft	30.07.09	Judith Cox/Francine Triffett	Aleks Todoroski
02 Draft	03.08.09	Judith Cox/ Francine Triffett	Aleks Todoroski
Final Draft	05.08.09	Judith Cox/Francine Triffett	Aleks Todoroski
Final	07.08.09	Judith Cox/ Francine Triffett	Aleks Todoroski
Final Revised	23.10.09	Judith Cox	Aleks Todoroski

PAEHolmes a Division of Queensland Environment Pty Ltd ABN 86 127 101 642

SYDNEY:

Suite 2B, 14 Glen Street Eastwood NSW 2122 Ph: +61 2 9874 8644 Fax: +61 2 9874 8904

BRISBANE:

Level 1, La Melba, 59 Melbourne Street South Brisbane Qld 4101

PO Box 3306 South Brisbane Qld 4101

Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Email: info@paeholmes.com

Website: www.paeholmes.com

TABLE OF CONTENTS

1 INTRODUCTION	1	
2 LOCAL SETTING AND PROJECT DESCRIPTION	1	
3 THE PROJECT		
4 AIR QUALITY CRITERIA	6	
5 EXISTING ENVIRONMENT	7	
5.1 Dispersion Meteorology	7	
5.2 Local Climatic Conditions	10	
5.3 Existing Air Quality	10	
5.4 Introduction	10	
5.5 Dust concentrations	11	
5.5.1 PM ₁₀ concentrations	11	
5.6 Dust Deposition	12	
6 APPROACH TO ASSESSMENT	16	
7 ESTIMATES OF EMISSIONS OF PARTICULATE MATTER	18	
7.1 Introduction	18	
7.2 Emissions from open cut and underground mining operations for the Project	18	
7.3 Emissions from neighbouring mines	24	
7.4 Estimated emissions from distant mines and other sources	25	
8 ASSESSMENT OF IMPACTS – PARTICULATE MATTER	27	
8.1 Assessment Criteria	27	
8.2 Assessment Approach	27	
8.2.1 Annual average concentrations	27	
8.2.2 24-hour average PM ₁₀ concentrations	27	
8.2.3 Interpretation of impacts at sensitive receptors	28	
8.3 Annual average PM ₁₀ , TSP and dust deposition predictions	29	
8.3.1 Introduction	29	
8.3.2 Year 1	30	
8.3.3 Year 3	40	
8.3.4 Year 5	50	
8.3.5 Year 7	60	
8.4 24-hour average PM ₁₀ concentrations	70	
8.5 Summary of impacted residences	74	
9 MITIGATION AND MONITORING	76	
9.1 Introduction	76	
9.2 Mine design	76	
9.3 Proposed dust management and control procedures	76	
9.4 Monitoring	79	
10 GREENHOUSE GAS EMISSIONS	80	
10.1 Introduction	80	
10.2 Science of global warming	80	
10.3 Quantifying greenhouse effects	81	
10.4 Greenhouse gas inventories	83	
10.5 Emission factors	83	
10.6 Ashton Coal Project greenhouse emissions	84	
10.6.1 Introduction	84	
10.6.2 Emissions from extraction and processing	84	

	10.6.3	Emissions from export and burning of the product coal	86
	10.6.4	Emissions from use of coal	87
	10.6.5	Total CO ₂ -equivalent emissions	88
	10.6.6	Important additional considerations	88
	10.6.7	Contribution to global warming and conclusions	89
11	CONCLU	JSIONS	90
12	REFERE	NCES	92

APPENDICES

Appendix A: Residence ownership details
Appendix B: Predicted PM _{2.5} emissions from mining sources
Appendix C: Joint wind speed, wind direction and stability class tables for Ashton Coa
meteorological station
Appendix D: Dust deposition, TEOM PM_{10} monitoring and HVAS TSP monitoring data
Appendix E: Example ISCMOD input file
Appendix F: Emission calculations

LIST OF TABLES

Table 4.1: NSW DECC Impact Assessment Criteria 6
Table 4.2: NSW DECC Assessment Criteria for TSP6
Table 4.3: NSW DECC Amenity Based Criteria for Dust Fallout
Table 5.1: Frequency of occurrence of stability classes in the study area
Table 5.2: Climate Information for Singleton Water Board Monitoring Station
Table 5.3: Annual average PM_{10} concentration at each TEOM monitoring site ($\mu g/m^3$)
Table 5.4: Annual average TSP concentration at each HVAS monitoring site (μg/m³)
Table 5.5: Dust deposition data (insoluble solids) – 2003 to 2008 (g/m²/month)
Table 7.1: Summary of estimated TSP emissions from the Project (kg/y)
Table 7.2: Summary of estimated TSP dust emissions from other mines (kg/y)
Table 7.3: Comparison of model predictions with previous monitoring data
Table 8.1: Summary of predicted annual average air quality impacts for Year 1
Table 8.2. Summary of predicted annual average air quality impacts for Year 3
Table 8.3. Summary of predicted annual average air quality impacts for Year 5 51
Table 8.4. Summary of predicted annual average air quality impacts for Year 7 61
Table 8.5. Summary of maximum predicted 24-hour average PM_{10} concentrations ($\mu g/m^3$) 70
Table 8.6: Number of days 24-hour average PM_{10} concentrations are predicted to exceed 50
μg/m³ due to Project alone at private residences only
Table 8.7: Summary of private residences where impacts predicted to exceed assessment criteria
Table 8.8: Summary of mine-owned residences where impacts predicted to exceed assessment
criteria
Table 9.1: Best Practice Control Procedures for Mine Design
Table 9.2: Best Practice Control Procedures for Wind-blown Dust
Table 9.3: Best Practice Controls for Mine-generated Dust
Table 10.1: Summary of greenhouse gas emission factors
Table 10.2: Fuel, energy and explosives usage from mining processing
Table 10.3: Summary of estimated CO ₂ -e emissions from mining and processing of coal from the
Project
Table 10.4: Estimated CO ₂ -e emissions from rail transport of product coal (t/y)
Table 10.5: Port of Newcastle coal destinations and distances
Table 10.6: Estimated CO ₂ -e emissions from sea transport of product coal (Mt)
Table 10.7: Estimated CO ₂ -e emissions from usage of coal (Mt)
Table 10.8: Summary of total estimated CO ₂ -e emissions all sources (Mt)

LIST OF FIGURES

Figure 2.1: Project Location
Figure 2.2: Location of Discrete Receptors
Figure 5.1: Annual and seasonal windroses for Ashton SEOC Repeater Site (July 2007 – June 2008)
Figure 5.2: Location of monitoring stations
Figure 5.3: TEOM PM ₁₀ concentrations
Figure 5.4: HVAS TSP concentrations
Figure 7.1: Modelling sources locations – Year 1 (2010 -2011)
Figure 7.2: Modelling sources locations – Year 3 (2012 – 2013)
Figure 7.3: Modelling sources locations – Year 5 (2014 – 2015)
Figure 7.4: Modelling sources locations – Year 7 (2016 – 2017)
Figure 8.1: Predicted annual average PM ₁₀ concentration due to emissions from the Project in Year
1
Figure 8.2: Predicted annual average TSP concentration due to emissions from the Project in Year
1
Figure 8.3: Predicted annual average dust deposition concentration due to emissions from the
Project in Year 1
Figure 8.4: Predicted annual average PM_{10} concentration due to emissions from the Project and
other sources in Year 1
Figure 8.5: Predicted annual average TSP concentration due to emissions from the Project and
other sources in Year 1
Figure 8.6: Predicted annual average dust deposition concentration due to emissions from the
Project and other sources in Year 1
Figure 8.7: Predicted annual average PM ₁₀ concentration due to emissions from the Project in Year
344
Figure 8.8: Predicted annual average TSP concentration due to emissions from the Project in Year
345
Figure 8.9: Predicted annual average dust deposition concentration due to emissions from the
Project in Year 3
Figure 8.10: Predicted annual average PM ₁₀ concentration due to emissions from the Project and
other sources in Year 3
Figure 8.11: Predicted annual average TSP concentration due to emissions from the Project and
other sources in Year 3
Figure 8.12: Predicted annual average dust deposition concentration due to emissions from the
Project and other sources in Year 3
Figure 8.13: Predicted annual average PM ₁₀ concentration due to emissions from the Project in
Year 554
Figure 8.14: Predicted annual average TSP concentration due to emissions from the Project in Year
555
Figure 8.15: Predicted annual average dust deposition concentration due to emissions from the
Project in Year 5 56
Figure 8.16: Predicted annual average PM ₁₀ concentration due to emissions from the Project and
other sources in Year 5
Figure 8.17: Predicted annual average TSP concentration due to emissions from the Project and
other sources in Year 5
Figure 8.18: Predicted annual average dust deposition concentration due to emissions from the
Project and other sources in Year 5
Figure 8.19: Predicted annual average PM_{10} concentration due to emissions from the Project in
Year 764

Figure 8.20: Predicted annual average TSP concentration due to emissions from the Project in Year
7
Figure 8.21: Predicted annual average dust deposition concentration due to emissions from the
Project in Year 7
Figure 8.22: Predicted annual average PM_{10} concentration due to emissions from the Project and
other sources in Year 767
Figure 8.23: Predicted annual average TSP concentration due to emissions from the Project and
other sources in Year 7
Figure 8.24: Predicted annual average dust deposition concentration due to emissions from the
Project and other sources in Year 7

1 INTRODUCTION

This report has been prepared by PAEHolmes on behalf of Wells Environmental Services for Ashton Coal Operations Limited (ACOL). This report assesses the likely air quality impacts of the proposed Ashton South East Open Cut coal mining project (hereafter referred to as SEOC) located in the Hunter Valley, New South Wales. The proposed SEOC will operate over a period of 7 years and will include open cut and underground mining, processing facilities, soil, waste and product emplacement areas, a conveyor system and associated infrastructure.

In summary, this report provides information on the following:

- Relevant air quality goals;
- Meteorological and climatic conditions in the area;
- A discussion of the existing air quality conditions in the area;
- The methods used to estimate dust emissions from the proposed mine;
- The expected dispersion and dust fallout patterns due to emissions from the mine and a comparison with the Department of Environment and Climate Change (DECC) assessment criteria;
- Mitigation and monitoring; and
- Greenhouse gas assessment.

2 LOCAL SETTING AND PROJECT DESCRIPTION

The SEOC is located in the Hunter Valley region of New South Wales approximately 12 km northwest of Singleton and 30 km south-east of Muswellbrook (see **Figure 2.** for mine location). The site is surrounded by other mining operations including Ravensworth East, Ravensworth West, Narama, Mount Owen, Integra North Open Cut, HVO South, HVO North, Rixs Creek, Glendell and Ashton North East Open Cut.

Air quality impacts have been assessed at the properties identified on **Figure 2..** Locations of sensitive receptors (i.e. residences) are identified by a small dot. **Appendix** presents details of land ownership and a map with all receptors identified.

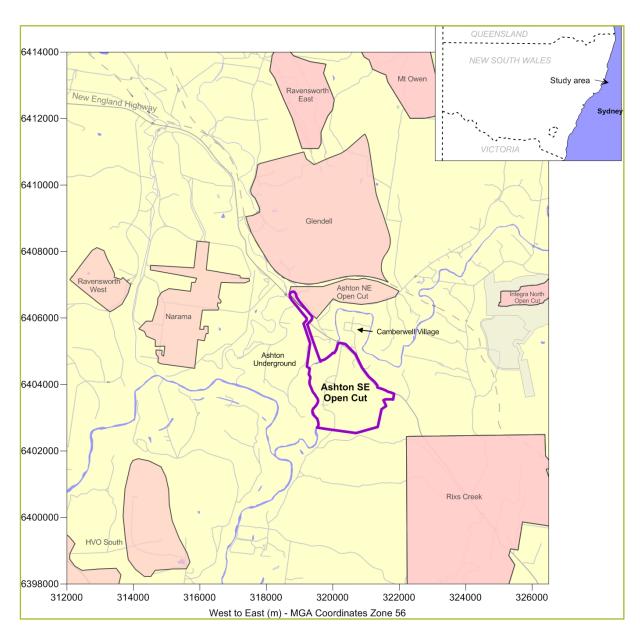


Figure 2.: Project Location

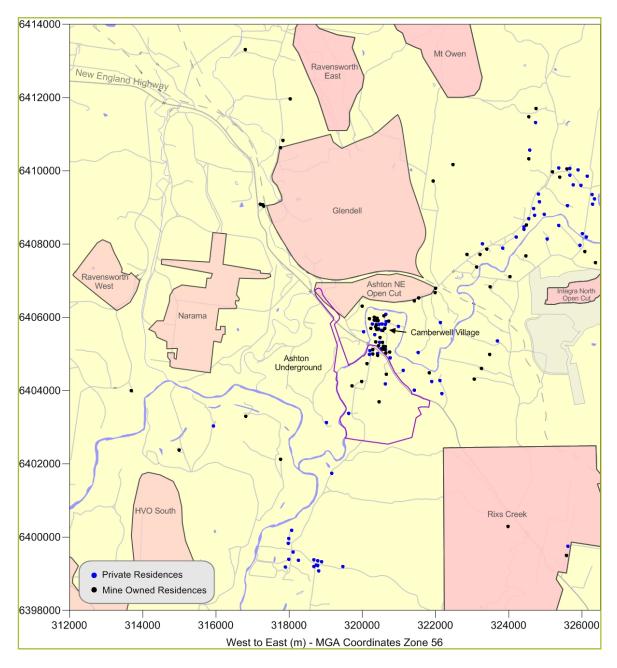


Figure 2.: Location of Discrete Receptors

3 THE PROJECT

The SEOC project comprises the following key elements:

- One open cut coal mine (the SEOC) producing up to 3.6Mtpa of ROM coal.
- Underground coal mining producing up to 5Mtpa of ROM coal.
- Demolition of existing structures within the footprint of the project.
- Environmental bund adjacent to the New England Highway blended into the out-of-pit emplacement and final landform.
- Free draining, stable final landform sympathetic to the surrounding topography.
- Rehabilitation of the final landform to a combination of woodland and grazing lands including in-spoil creek alignments.
- Final void in south eastern corner, to be used for tailings storage for the existing approved underground operations.
- ROM pad, stockpiles and crushers with a conveyor to transport the ROM coal to the existing ACP CPP.
- Conveyor and bridge over New England Highway.
- Conveyor and gantry over Glennies Creek.
- Piping between SEOC and ACP CPP to transfer water and coal reject.
- New office and workshop facilities, bathhouse and administration buildings located east of the SEOC and south of the New England Highway.
- New access road from New England Highway to the office and workshop facilities.
- Power supply and water supply infrastructure.
- The diversion of Energy Australia power lines and relocation of telecommunication lines.
- Staged 1 in 100 year event designed flood levee and associated flood mitigation works around ROM pad and along the western pit edge parallel with Glennies Creek.
- Water storage dam east of the SEOC.
- Enhancement of the Glennies Creek riparian corridor and revegetation of other cleared lands.

The SEOC Project occupies an area of approximately 300ha. Mining will commence in the north of the SEOC area via a box cut and progress to the south. Initially overburden will be emplaced out of pit along the northern boundary of the open cut forming an environmental bund adjacent to the New England Highway. In-pit emplacement of overburden will commence as soon as feasible.

The environmental bund will be integrated with the in-pit emplacement reaching maximum height in approximately 1 to 2 years. Rehabilitation of the environmental bund will commence progressively following its construction with a view to have the bund and northern face of the emplacement in a vegetated state within 12 months of its emplacement.

The SEOC will advance to the south over a period of 7 years, extracting up to 3.6Mt of ROM coal per annum, creating approximately 2.4Mtpa of product coal.

The current underground mining operations extract coal at a rate of 3Mtpa. ACOL seek approval to increase this amount to 5Mtpa of ROM coal to account for low yields and flexibility. Underground mining would operate 24 hours per day, 7 days per week. ROM coal will be transported via an underground conveyor system and will be unloaded at the existing coal processing plant.

The mining method utilised will be primarily truck and excavator with a haul back system to maximise in-pit backfill of overburden. Variations including throw blasting and dozer push may also be used. The final void will be located in the south-eastern corner and filled with coarse and fine washery reject material. It is anticipated that the final void will be used for approximately 6-7 years after the completion of mining for storage of tailings from the approved underground operations.

The SEOC offices, workshop and associated facilities are located east of the SEOC. Access to the facilities will be from a new intersection with the New England Highway. ROM coal will be hauled from the coal face to the ROM coal facility located west of the SEOC and east of Glennies Creek by truck along the haul roads within and adjacent to the open cut.

The SEOC project will be operated as part of the ACP and utilize the coal handling, preparation and loading facilities, and other office and surface facilities approved by the Ashton development consent (DA) 309-11-2001-i in 2002. In order to allow the effective integration and combined operation of the SEOC with the existing ACP an application to modify the existing ACP development consent under Section 75W of the EP&A Act 1979 has been made. ACOL seeks to modify the existing ACP development consent in the following manner:

- Increase the throughput of the existing ACP coal handling and preparation plant (CHPP) and rail loading facilities to cater for approximately 8.6Mtpa of ROM coal.
- Modification of the existing CHPP facilities to allow the receipt of coal from the SEOC.
- Disposal of coal tailings from the existing underground coal mine in the SEOC final void.
- Increase the coal extraction rate to 5.0Mtpa of ROM coal in the existing underground coal mine to provide operational flexibility.
- Associated modifications to the conditions of (DA) 309-11-2001-i to facilitate the above changes.

4 AIR QUALITY CRITERIA

In its modelling and assessment methodology, New South Wales Department of Environment and Climate Change (NSW DECC) specifies air quality assessment criteria relevant for assessing impacts from mining (NSW DEC, 2005). The assessment criteria are summarised in Table 4., Table 4. and Table 4.

These criteria are consistent with the National Environment Protection Measures for Ambient Air Quality (referred to as the Ambient Air-NEPMs (**NEPC**, **1998**). However, the NSW DECC's criteria include averaging periods which are not included in the Air-NEPMs and references to other, non-NEPM, measures of air quality, namely total suspended particulate matter (TSP) (see **Table 4.**) and the insoluble component of deposited dust (see **Table 4.**).

Table 4.: NSW DECC Impact Assessment Criteria

		Concentration	
Pollutant	Averaging period	Parts per hundred million (pphm)	μ g/m ³
PM ₁₀	1-day	-	50*
	annual	-	30
SO ₂	10 minutes	25	712
	1-hour	20	570
	1-day	8	228
	1-year	2	60
NO ₂	1-hour	12	246
	1-year	3	62
		Parts per million (ppm)	mg/m³
CO	15 minutes	87	100
	1-hour	25	30
	8-hours	9	10

^{*} Non-cumulative for purposes of impact assessment

Table 4.: NSW DECC Assessment Criteria for TSP

Pollutant	Averaging period	Concentration
TSP	Annual	90 μg/m³

Table 4.: NSW DECC Amenity Based Criteria for Dust Fallout

Pollutant	Averaging period	Maximum increase in deposited dust	Maximum allowable dust deposition
Deposited dust	Annual	2 g/m ² /month	4 g/m²/month
(insoluble)			

In May 2003, NEPC released a variation to the NEPM (**NEPC**, **2003**) to include advisory reporting standards for PM_{2.5}. The advisory reporting standards for PM_{2.5} are a maximum 24-hour average of 25 μ g/m³ and an annual average of 8 μ g/m³. However, there is no time line for compliance. The goal was to gather sufficient data nationally to facilitate the review of the Air Quality NEPM which is currently underway. The variation includes a protocol setting out monitoring and reporting requirements for particles as PM_{2.5}.

At this stage, the advisory reporting $PM_{2.5}$ standards are not part of the NSW DECC assessment criteria and while predictions have been made as to the likely contribution that emissions from the Project would make to ambient $PM_{2.5}$ concentrations, these predictions have not been used to assess impacts against the proposed advisory standard. Predictions of $PM_{2.5}$ concentrations are provided in **Appendix** .

The low sulphur content of Australian diesel, in combination with the fact that mining equipment that is widely dispersed over mine sites, is such that the sulphur dioxide (SO_2) goals would not be exceeded, even in mining operations that use large quantities of diesel. For this reason, no detailed study is required to demonstrate that emissions of SO_2 from the Project would not significantly affect ambient SO_2 concentrations. Similarly, NO_x and CO emissions from the Project activities are too small and too widely dispersed to require a detailed modelling assessment.

Thus, the focus of the study is on the potential effects of PM emissions.

5 EXISTING ENVIRONMENT

This section describes the dispersion meteorology, local climatic conditions and existing air quality in the area. The existing air quality conditions will be influenced to some degree by the existing operations of the Ashton coal mine.

5.1 Dispersion Meteorology

The Gaussian dispersion model used for this assessment requires information about the dispersion characteristics of the area. In particular, data are required on wind speed, wind direction, atmospheric stability class¹ and mixing height².

The DECC have listed requirements for meteorological data that are used for air dispersion modelling in their *Approved Methods for the Modelling and Assessment of Air Pollutants in NSW* (**NSW DEC, 2005**). The requirements are as follows:

- Data must span at least one year;
- Data must be at least 90% complete; and,
- Data must be representative of the area in which emissions are modelled.

ACOL operates two weather stations around the project; the repeater weather station on a ridge between the mine and Camberwell Village and also Site 1 weather station located in Camberwell Village. **Figure 5.** shows the location of these sites. Both weather stations collect 10-minute records of temperature, wind speed, wind direction and sigma-theta (a measure of the fluctuation of the horizontal wind direction). For the purposes of this assessment, data from the repeater weather station will be used as they are representative of the prevailing weather conditions that most influence air dispersion.

Data between July 2007 and June 2008 from the repeater site were available for this assessment. The available data contain all the parameters necessary to determine stability class and prepare windroses for analysis. There were 8,781 hourly records available which satisfies the DECC's requirement of 90% data recovery in the year.

Annual and seasonal windroses have been prepared using the on-site meteorological data and are shown in **Figure 5.** for the repeater site. The most common winds are from the west-northwest, and

¹ In dispersion modelling, stability class is used to categorise the rate at which a plume will disperse. In the Pasquill-Gifford stability class assignment scheme, as used in this study, there are six stability classes A through to F. Class A relates to unstable conditions such as might be found on a sunny day with light winds. In such conditions plumes will spread rapidly. Class F relates to stable conditions, such as occur when the sky is clear, the winds are light and an inversion is present. Plume spreading is slow in these circumstances. The intermediate classes B, C, D and E relate to intermediate dispersion conditions.

² The term mixing height refers to the height of the turbulent layer of air near the earth's surface into which ground-level emissions will be rapidly mixed. A plume emitted above the mixed-layer will remain isolated from the ground until such time as the mixed-layer reaches the height of the plume. The height of the mixed-layer is controlled mainly by convection (resulting from solar heating of the ground) and by mechanically generated turbulence as the wind blows over the rough ground.

the east-southeast. This pattern of winds is evident in most seasons to various degrees, however west-north westerlies are less apparent in summer and east-south easterlies are less apparent in winter. Calm periods (that is, winds less than or equal to 0.5 metres per second [m/s]) occurred 6.2% of the time annually. The mean wind speed from the 2007/2008 data was 2.8 m/s.

To assess dispersion, it is necessary to have data available on atmospheric stability. A stability class was calculated for each hour of the meteorological data using sigma-theta according to the method recommended by the United States Environmental Protection Agency (US EPA) (**US EPA, 1985**). **Table 5.** shows the frequency of occurrence of the stability categories expected in the area.

Table 5.: Frequency of occurrence of stability classes in the study area

Stability Class	Repeater weather station data (June 2007 to July 2008)
А	0.6
В	1.2
С	5.6
D	47.3
Е	25.9
F	19.4
Total	100

The most common stability class in the area was determined to be neutral D class stability.

Joint wind speed, wind direction and stability class frequency tables for the repeater weather station data are provided in **Appendix** .

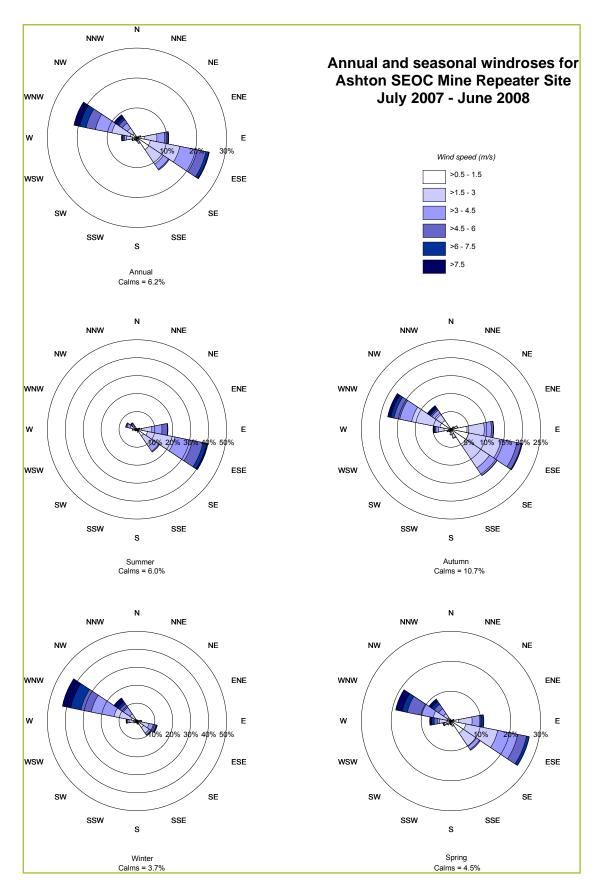


Figure 5.: Annual and seasonal windroses for Ashton SEOC Repeater Site (July 2007 – June 2008)

5.2 Local Climatic Conditions

The Bureau of Meteorology collects climatic information at Singleton, approximately 20 km to the south-east of the project. A range of climatic information collected from the Singleton site is presented in **Table 5.** (**Bureau of Meteorology, 2008**).

Table 5.: Climate Information for Singleton Water Board Monitoring Station

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
9 am Mean	9 am Mean Dry-bulb and Wet-bulb Temperatures (°C) and Relative Humidity (%)												
Dry-bulb	22.0	21.0	19.2	16.8	13.0	10.0	9.1	10.8	14.6	18.4	19.3	21.1	16.3
Humidity	76	83	84	82	85	84	83	76	71	66	69	73	78
3 pm Mean	Dry-bu	lb and W	et-bull	Temp	erature	es (°C)	and Re	lative I	Humidi	ty (%)			
Dry-bulb	29.0	28.3	26.3	24.1	19.9	17.1	16.8	18.8	21.8	24.6	25.8	27.9	23.4
Humidity	49	52	54	51	60	57	54	44	43	43	46	47	50
Mean Maxi	mum Te	mperatı	ıre (°C))									
Mean	30.6	29.6	27.7	25.4	21.1	18.3	18.0	20.1	23.1	26.0	27.6	29.7	24.8
Mean Minir	num Ter	mperatu	re (°C)										
Mean	17.3	17.2	15.2	11.1	8.6	5.6	4.8	5.0	8.0	10.7	13.5	15.9	11.1
Rainfall (m	Rainfall (mm)												
Mean	70.2	107.6	75.1	38.3	37.8	31.7	38.8	27.6	44.1	32.8	59.2	86.6	645.4
Raindays (Number)											
Mean	7.4	7.5	7.3	3.9	5.5	4.6	4.7	4.2	5.8	5.0	7.6	6.8	70.3

Climate averages for Station: 061371, Singleton Water Board, Commenced: 1991; Last record: 2002; Latitude (deg S): -33.57; Longitude (deg E): 151.16; State: NSW. Source: Bureau of Meteorology, 2008 website.

Temperature data from **Table 5.** indicate that the warmest month is January and the coolest is July with the mean daily maximum temperatures of 30.6 and 18.0°C respectively. The mean daily minimum temperature follows the same pattern with the warmest month being January and the coolest being July with mean daily minimum temperatures of 17.3 and 4.8°C respectively.

Over the year, rain falls on an average of 70.3 days and the months with the highest and lowest monthly average rainfalls are February (107.6 mm) and August (27.6 mm) respectively. The warmer months typically have more rain days than the cooler months.

5.3 Existing Air Quality

5.4 Introduction

Air quality standards and goals refer to pollutant levels that include the contribution from specific projects and existing sources. To fully assess impacts against all the relevant air quality standards and goals (see **Section 4**) it is necessary to have information or estimates on existing dust concentration and deposition levels in the area in which the Project is likely to contribute to these levels. It is important to note that the existing air quality conditions (that is, background conditions) will be influenced to some degree by the existing mining operations.

Dust concentration and dust deposition (PM_{10} and Total Suspended Particulate Matter (TSP)) is monitored in the study area. The locations of the monitoring sites are shown in **Figure 5.** There are five high volume air samplers (HVAS) measuring TSP, seven Tapered Element Oscillating Microbalance (TEOMs) measuring PM_{10} and 13 dust deposition gauges (DDG). The following sections discuss the monitoring results for the period 2004 to mid 2009.

5.5 Dust concentrations

5.5.1 PM₁₀ concentrations

Figure 5. shows the locations of the TEOMs used to monitor PM_{10} concentrations. All TEOMs are located within approximately 3km of the mining site with the closest being less than 1km from the site. The TEOMs record daily 24-hour average concentrations and these results are presented in **Figure 5.** It should be noted that TEOM site 8 was in operation from February 2007.

Generally, the annual rolling averages show that all sites fall below the annual average assessment criterion of 30 μ g/m³. TEOM site 4 however, recorded levels above the criterion in 2004. Generally, the monitoring results at these locations are influenced by existing Ashton North East Open Cut (NEOC) operations which would be expected as the monitoring network was specifically devised to monitor emissions from that mine. It should also be noted that sites closer to the existing NEOC such as TEOM sites 1 and 8, show generally higher PM₁₀ annual average concentrations than those sites further away such as sites 7 and 3. Sites 1 and 8 are also located within the north-west and south-east prevailing wind directions (refer to **Figure 5.**).

A summary of the recorded annual average data is presented in **Table 5.** for the period 2004 to mid 2009. As in **Figure 5.**, the results show that all sites recorded levels below the DECC criterion of 30 μ g/m³ from 2004 to 2008, with the exception of Site 4 in 2004 that recoded a concentration of 36.8 μ g/m³. Data shown in **bold red** indicate levels above the DECC criteria of 30 μ g/m³.

2004 2008 1 23.8 24.5 27.6 27.5 25.9 26.3 25.9 2 23.5 25.2 27.0 23.4 18.2 18.4 22.6 3 25.2 21.8 24.7 24.1 22.5 24.6 23.8 4 23.9 26.7 36.8 24.6 24.7 23.1 27.1 7 25.6 23.4 23.7 23.0 21.1 21.5 23.1 24.5 25.1 24.6 24.7

Table 5.: Annual average PM₁₀ concentration at each TEOM monitoring site (µg/m³)

Figure 5. shows the locations of the HVAS's used to monitor TSP concentrations. All HVAS's are located within approximately 3km of the mining site. The HVAS's record 24-hour average concentrations every sixth day and these results are presented in **Figure 5.**. A summary of the results is presented in **Table 5.** for the four sites between 2004 and mid 2009. It should be noted that TEOM site 8 was in operation from January 2007.

The annual average TSP concentration for each of the four sites has generally been below the DECC's 90 $\mu g/m^3$ criterion. However, each of the sites recorded levels above the annual TSP criterion in at least one year.TSP levels that are notably above the criterion were recorded between 2006 and 2008 at Site 1. This site is located closest to the existing NEOC mine in Camberwell Village, and is also aligned on the prevailing wind direction axis relative to the NEOC. HVAS sites 2, 3 and 8 show TSP concentrations below the criterion.

The average for all sites is 87.4 μ g/m³ which is below the DECC's 90 μ g/m³ criterion. Data shown in **bold red** indicate levels above the DECC criteria of 90 μ g/m³.

Table 5.: Annual average TSP concentration at each HVAS monitoring site ($\mu g/m^3$)

HVAS Site 2004 2005	2006 2	007 2008	2009	Annual
---------------------	--------	----------	------	--------

1	72.9	90.1	103.9	103.4	99.9	89.2	93.2
2	79.7	94.7	86.1	78.6	75.3	83.6	83.0
3	102.2	87.5	81.7	88.6	92.3	94.2	91.1
8	-	-	-	83.6	80.4	83.2	82.4

5.6 Dust Deposition

Figure 5. shows the locations of the 11 dust deposition gauges analysed in this assessment. The monthly data are presented in **Appendix**, and the annual averages summarised in **Table 5.**. Data shown in **bold red** indicate levels above of the DECC criteria of $4 \mu g/m^3$.

Table 5.: Dust deposition data (insoluble solids) - 2003 to 2008 (g/m²/month)

Gauge	2004	2005	2006	2007	2008	2009	Average
DG2	3.4	3.3	2.3	3.8	5.5	4.1*	3.7
DG4	3.3	2.2	2.7	3.7	5.4	4.6*	3.7
DG5	2.0	2.7	2.5	2.1	2.6	4.5*	2.7
DG6	2.2	2.5	2.9	3.1	2.9	3.5*	2.8
DG7	3.0	3.4	5.0	4.4	3.6	3.9*	3.9
DG8	2.6	2.7	3.4	3.0	3.1	3.0*	3.0
DG9	3.2	3.0	3.9	3.7	3.1	3.5*	3.4
DG10	2.9	3.2	3.0	3.0	4.3	2.3*	3.1
DG11	1.9	1.9	2.3	2.9	2.8	2.7*	2.4
DG13	7.1	3.8	4.7	3.7	4.0	6.1*	4.9
DG14	-	-	3.2*	2.0	2.5	2.3*	2.5
Average of all data							3.2

^{*} Less than 6 months of valid data available

It is clear from the monitoring results presented in **Table 5.**, that there are some sites which exceed the 4 g/m 2 /month DECC criterion. Notable, DG13 recorded levels above the criterion in three years. DG13 is in the prevailing wind direction relative to the existing NEOC mine, which may contribute to the dust at this site.

Measurements at deposition gauges are heavily influenced by local dust producing activities, and this can be seen in the large variation in levels over small distances. For example, DG14 and DG7 are both located within Camberwell Village. DG14 has reported levels below 4 $g/m^2/month$ for the entire monitoring period while DG7, which is approximately 600 m south-east of DG7, exceeds this level in two years. The annual average for all sites is 3.2 $g/m^2/month$ which complies with the DECC's criterion of 4 $g/m^2/month$.

⁺ Contamination from bird dropping, grazing material, irrigation etc.

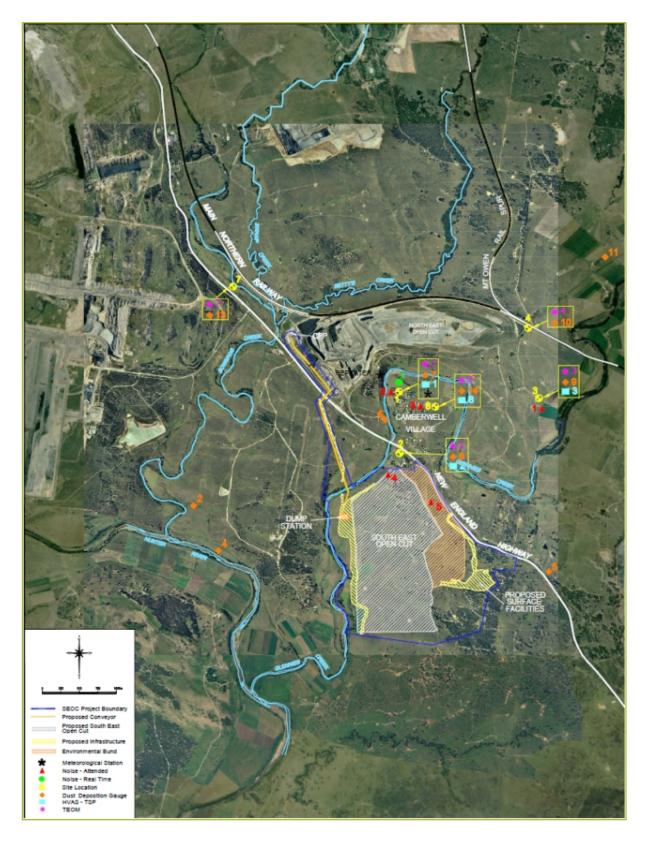


Figure 5.: Location of monitoring stations

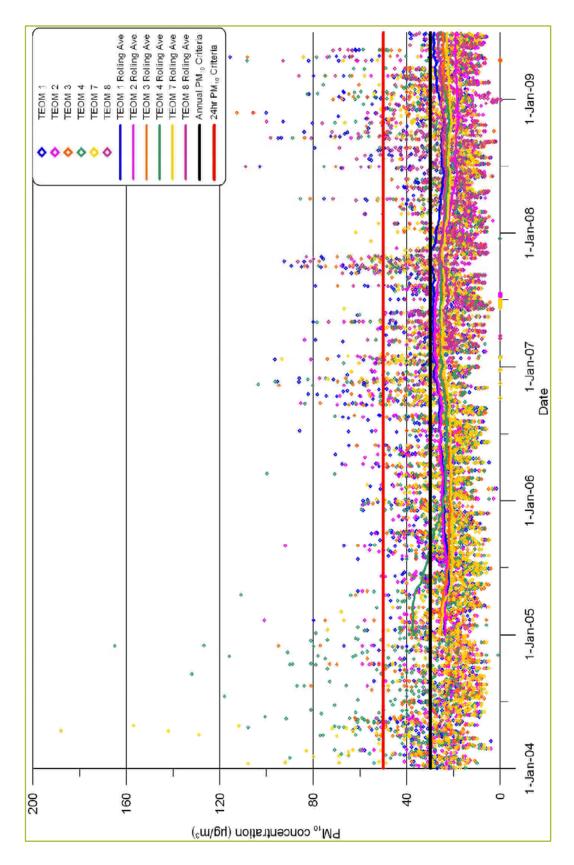


Figure 5.: TEOM PM₁₀ concentrations

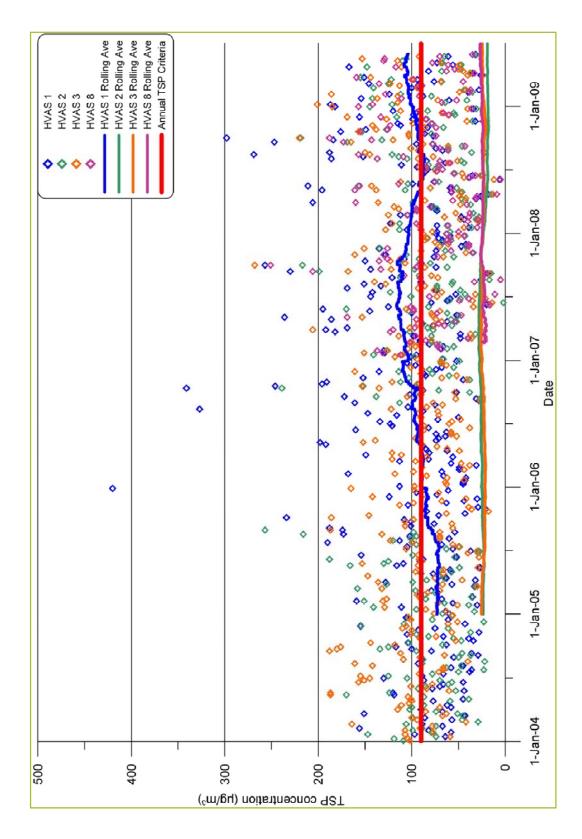


Figure 5.: HVAS TSP concentrations

6 APPROACH TO ASSESSMENT

In August 2005, DECC published guidelines for the assessment of air pollution sources using dispersion models (**NSW DEC, 2005**). The guidelines specify how assessments based on the use of air dispersion models should be undertaken. They include guidelines for the preparation of meteorological data to be used in dispersion models, the way in which emissions should be estimated and the relevant air quality criteria for assessing the significance of predicted concentration and deposition rates from the proposal. The approach taken in this assessment follows as closely as possible to the approaches suggested by the guidelines.

This section is provided so that technical reviewers can appreciate how the modelling of different particle size categories was carried out.

The model used was a modified version of the US EPA ISCST3 model (ISCMOD). ISCST3 is fully described in the user manual and the accompanying technical description (**US EPA, 1995a**).

The ISCST3 model has a tendency to overestimate short-term (24-hour) PM_{10} concentrations (**Holmes et al., 2007**). To overcome this difficulty the modelling algorithms were modified to create ISCMOD. ISCMOD is identical to ISC except that the horizontal plume spreading dispersion curves have been modified to adopt the recommendations of the American Meteorological Society's (AMS) expert panel on dispersion curves (**Hanna, 1977**) and the suggestions made by **Arya** (**1999**). The suggested changes were recommended because, as the AMS panel notes, the original horizontal dispersion curves relate to an averaging time of three minutes and they recommend that these be adjusted to the one hour curves required by ISC. The change involves increasing the horizontal plume widths by a factor of 1.82 (60 minutes / 3 minute) $^{0.2}$. The modifications improve the performance of the model in predicting 24-hour concentrations and make almost no difference to the annual average predictions.

A similar adjustment has been applied to account for the local surface roughness being different at the sites compared with the site where the original curves were developed. The sites have been taken to have a surface roughness of 0.3m compared with 0.03m for the original curves. The adjustment leads to an increase in the horizontal and vertical curves by a factor of $(0.3 \text{ m}/\ 0.03 \text{ m})^{0.2}$ namely 1.6.

The modelling has been based on the use of three particle-size categories (0 to $2.5\mu m$ - referred to as PM_{2.5}, 2.5 to $10\mu m$ - referred to as CM (coarse matter) and 10 to $30\mu m$ - referred to as the Rest). Emission rates of TSP have been calculated using emission factors developed both within NSW and by the US EPA (see **Section 7**).

The distribution of particles has been derived from measurements published by the SPCC (SPCC, 1986). The distribution of particles in each particle size range is:

- PM_{2.5} (FP) is 4.7% of the TSP;
- PM_{2.5-10} (CM) is 34.4% of TSP; and
- PM₁₀₋₃₀ (Rest) is 60.9% of TSP.

Modelling was done using three ISC source groups with each group corresponding to a particle size category. Each source in the group was assumed to emit at the full TSP emission rate and to deposit from the plume in accordance with the deposition rate appropriate for particles with an aerodynamic diameter equal to the geometric mean of the limits of the particle size range, except for the $PM_{2.5}$ group, which was assumed to have a particle size of 1 μ m. The predicted concentration in the three plot output files for each group were then combined according to the weightings in the dot points above to determine the concentration of PM_{10} and TSP.

The ISC model also has the capacity to take into account dust emissions that vary in time, or with meteorological conditions. This has proved particularly useful for simulating emissions on mining operations where wind speed is an important factor in determining the rate at which dust is generated.

Estimates of emissions for each source were developed on an hourly time step taking into account the activities that would take place at that location. Thus, for each source, for each hour, an emission rate was determined which depended upon the level of activity and the wind speed. It is important to do this in the ISC model to ensure that long-term average emission rates are not combined with worst-case dispersion conditions which are associated with light winds. Light winds at a mine site would correspond with periods of low dust generation because wind erosion and other wind dependent emissions rates will be low. Light winds also correspond with periods of poor dispersion. If these measures are not taken into account, the model has the potential to significantly overstate impacts.

Operations were represented by a series of volume sources located according to the location of activities for the modelled scenarios (as shown on **Figure 7.** to **Figure 7.**). These correspond to operations as they are envisaged to occur in Year 1 (Fiscal Years 2010 – 2011), Year 3 (2012 – 2013), Year 5 (2014 – 2015) and Year 7 (2016 – 2017).

Dust concentrations and deposition rates have been predicted in the vicinity of the Project for the three stages of the proposed mining operations that were modelled. The local terrain has been taken into consideration for the modelling.

The modelling has been performed using the meteorological data discussed in **Section 5** and the dust emission estimates from **Section 7**. As an example, an ISCMOD input file is provided in **Appendix**.

All activities have been modelled for 24 hours per day, with the exception of topsoil removal, drilling of overburden, and grading, which have been assumed to occur between the hours of 7am and 7pm, and the blasting of overburden, which has been assumed to occur between the hours of 9am and 5pm only. **Section 7** provides details of dust emissions and allocation of sources for each activity.

Underground mining of ROM coal has a current approved extraction rate of approximately 3Mtpa. Ashton proposes to maintain this rate of production for the initial year of operation and subsequently to ramp up underground production to 5Mtpa. Therefore, an extraction rate of 3Mtpa of underground ROM coal was modelled in the first year and an extraction rate of 5Mtpa was modelled in years 3, 5 and 7.

To assess the air quality impacts of the proposed mining operations alone, the activities associated with the Project have been modelled in isolation. Contour plots were created and also the results at specific receptor locations were examined in order to assess the contribution mining activities to local air quality. Model predictions were then compared to the DECC criteria for deposited dust and 24-hour PM_{10} that are taken to be project specific criteria for assessing potential impacts.

For assessment of the cumulative impacts of the proposed mining operations, a separate set of model results have been presented which consider the contribution of other mines in the area as well as other local sources of dust. The Project model results were added to predicted annual average TSP, PM_{10} and dust deposition due to emissions from other mines. In addition, the contribution of other non-modelled mines and dust sources in the area was included through the use of a constant background level for annual average TSP, PM_{10} and dust deposition.

Modelled sources associated with mines other than the Project have been considered in three classes as follows:

- 1. Wind erosion sources
- 2. Wind sensitive sources
- 3. Wind insensitive sources

The mines other than the Project that were individually modelled for the assessment are presented in **Figure 2.**.

Uniform background levels were used across the modelling domain to account for the dust from sources that were not modelled. Section **7.4** outlines how these background levels were derived.

7 ESTIMATES OF EMISSIONS OF PARTICULATE MATTER

7.1 Introduction

This section discusses the calculation of the particulate emissions applied in the assessment. Emissions have been calculated for the following:

- The open-cut and underground operations from the Project
- Approved operations at other mines in the area

7.2 Emissions from open cut and underground mining operations for the Project

The operation of the mine has been analysed and estimates of dust emissions for the individual activities and operations for both open cut and underground mining operations have been made. Emission factors developed both locally and by the US EPA, have been applied to estimate the amount of dust produced by each activity. The emission factors applied are considered to be the most reliable or up-to-date methods for determining dust generation rates. The mining plans for the Project have been analysed and detailed emissions inventories have been prepared for five scenarios.

- Year 1 (Fiscal year 2010 2011);
- Year 3 (Fiscal year 2012 2013);
- Year 5 (Fiscal year 2014 2015); and
- Year 7 (Fiscal year 2016 2017).

The detailed calculations are provided in **Appendix** .

Appendix provides information on the equations used, the basic assumptions about material properties (e.g. moisture content, silt content etc), information on the way in which equipment would be used to undertake different mining operations and the quantities of materials that would be handled in each operation. **Figure 7.** to **Figure 7.** show the general progression of mining and associated activities over the life of the Project together with numbered locations that represent dust sources assumed in the modelling. The activities that are associated with each of the numbered locations are identified in **Appendix**.

Table 7. presents the emission estimates for each year modelled. Detailed emission estimates are provided in **Appendix** .

Table 7.: Summary of estimated TSP emissions from the Project (kg/y)

ACTIVITY	Year 1	Year 3	Year 5	Year 7
Topsoil Removal - Dozers/Excavators stripping topsoil	2,039	2,039	2,039	-
Topsoil removal - Sh/Ex/FELs loading topsoil	804	2,260	2,612	-
Topsoil removal - Hauling topsoil to emplacement area	10,378	35,270	49,189	-
Topsoil removal - Emplacing topsoil at emplacement area	804	2,260	2,612	-
OB - Drilling	11,943	11,943	11,943	11,943
OB - Blasting	21,825	21,825	21,825	21,825
OB - Excavator loading OB to haul truck	73,685	72,761	72,761	37,092
OB - Hauling to emplacement areas	669,098	1,080,725	1,146,313	342,042
OB - Emplacing at emplacement areas	73,685	72,761	72,761	37,092
OB - Dozers on OB	11,967	11,967	11,967	11,967
CL - Dozers ripping/pushing/clean-up	48,852	48,852	48,852	48,852
CL - Sh/Ex/FELs loading open pit coal to trucks	164,392	173,881	192,072	63,051
CL - Hauling open pit coal to ROM pad	63,065	55,587	78,946	28,795
CL - Unloading ROM to ROM stockpiles	20,496	21,679	23,947	7,861
CL - Loading ROM directly to hopper to be crushed	49,318	52,164	57,622	18,915
CL - Loading from stockpile to crusher using FELs	115,075	121,717	134,450	44,136
CL - Crushing ROM	7,906	8,362	9,237	3,032
CL - ROM hopper unloading coal to conveyor 1	29,280	30,970	34,210	11,230
CL - Conveyor to CHPP	993	993	993	993
CL - Unloading to transfer point 1	640	677	747	245
CL - Unloading to transfer point 2	640	677	747	245
CL - Unloading to transfer point 3	640	677	747	245
CL - Unloading to transfer point 4	640	677	747	245
CL - Unloading to transfer point 5	640	677	747	245
CL - Unloading to CHPP	914	967	1,068	351
CL - Unloading underground coal to CHPP	30,000	50,000	50,000	50,000
CL- Handle coal at CHPP (100%)	1,850	2,527	2,629	1,911
CL- Rehandle coal at CHPP (+10%)	185	253	263	191
CL - Loading product coal to trains	1,134	1,492	1,513	1,161
CL - Loading rejects and tailings to haul trucks	473	-	-	-
CL - Hauling rejects and tailings to NEOC voids	21,348	-	-	-
CI - Unloading rejects and tailings to NEOC voids	473	-	-	-
WE - OB dump area	63,773	139,810	128,947	114,230
WE - Open pit	58,517	51,859	99,864	97,762
WE - ROM stockpiles	10,232	10,232	10,232	10,232
WE - Product stockpiles	3,504	3,504	3,504	3,504
WE - Dam construction	1,051	, -	-	-
Grading roads	43,132	43,132	43,132	43,132
Upcast Vent	31,536	31,536	31,536	31,536
TOTAL TSP (kg)	1,646,925	2,166,712	2,350,776	1,044,064

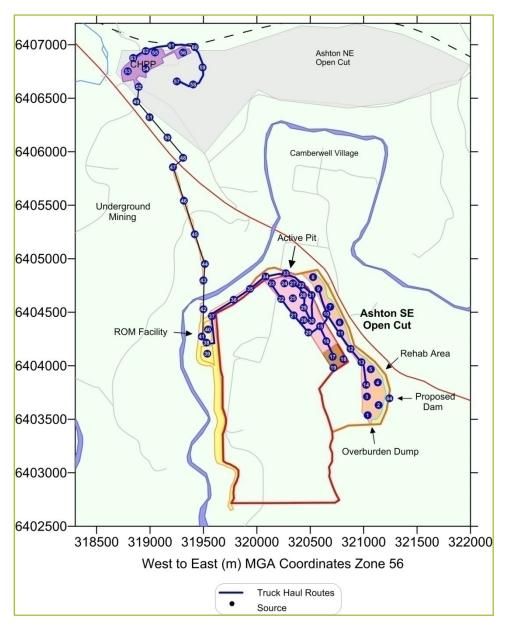


Figure 7.: Modelling sources locations - Year 1 (2010 -2011)

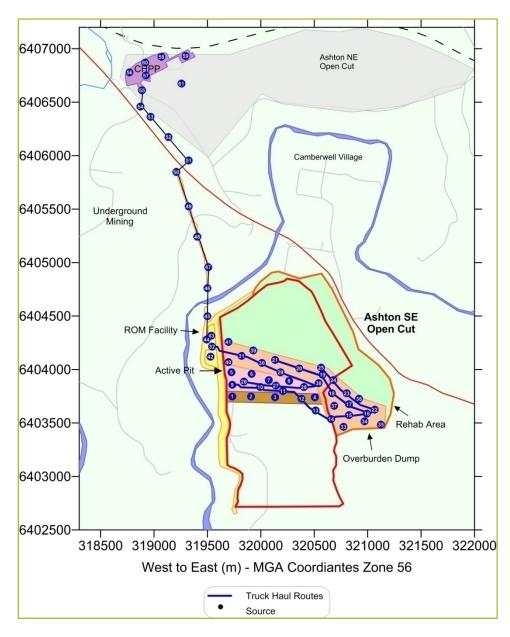


Figure 7.: Modelling sources locations - Year 3 (2012 - 2013)

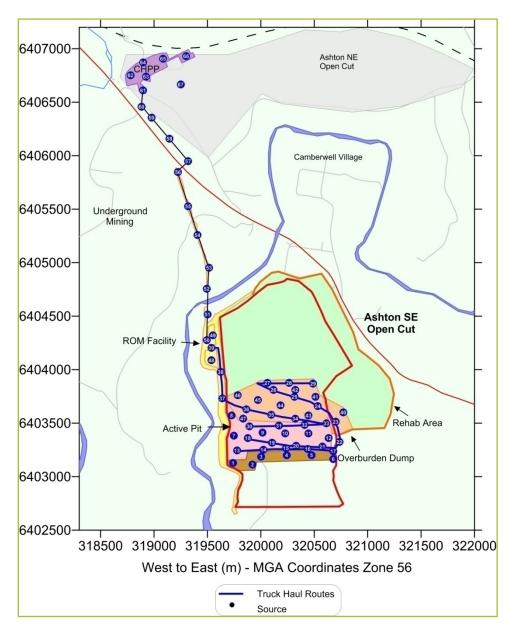


Figure 7.: Modelling sources locations - Year 5 (2014 - 2015)

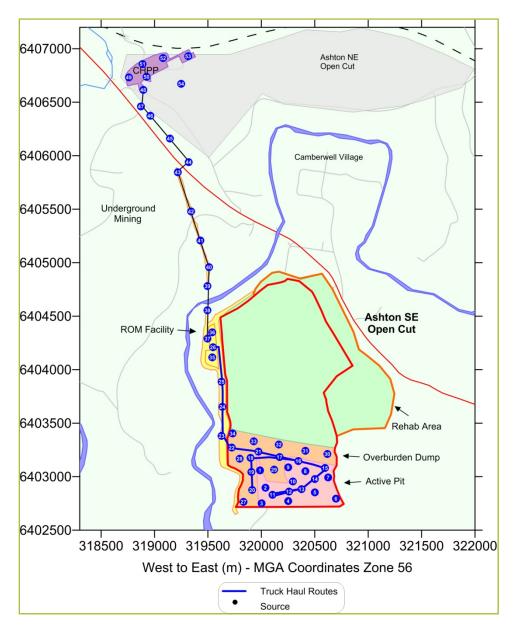


Figure 7.: Modelling sources locations - Year 7 (2016 - 2017)

7.3 Emissions from neighbouring mines

To assess total cumulative dust levels, the emissions from the SEOC, other neighbouring mines and residual background levels have been calculated and modelled. This section outlines the calculation of emissions from other mines as applied in the modelling.

The dust inventories used in the modelling include estimates of emissions from other approved operations at nearby mines. The locations of the nearby mines are shown in **Figure 2.**.

The estimated emissions for the neighbouring mines have been taken from the relevant EIS documents for following mines:

- Integra North Open Cut (Year 1 and Year 3 only) (URS, 2009)
- Ravensworth East (Year 1, Year 3 and Year 5 only) (Holmes Air Sciences, 2003)
- Mt Owen (all years) (Holmes Air Sciences, 2006)
- Glendell (all years) (Holmes Air Sciences, 2007a)
- Narama (Year 1, Year 3 and Year 5 only) (Holmes Air Sciences, 2005)
- HVO South (Holmes Air Sciences, 2007b)
- Rixs Creek (Holmes Air Sciences, 1994)
- Ashton North East Open Cut (NEOC) (Year 1 July to October only)(Holmes Air Sciences,
 2003)
- Ravensworth West (Year 1 only) (Year 1 July to October only) (ERM, 1997)

Where data were not available for the precise years of the Project, data were interpolated or extrapolated from the available previously calculated emissions data. **Table 7.** presents a summary of the estimated emissions apportioned to other mines.

In the cumulative modelling work, each neighbouring mine has been treated as a small number of volume sources. These have been located at the apparent points of major emission as estimated from the known locations of the pits and/or major dust sources on the mine or facility.

Sources have been considered in three classes covering all dust emission sources for which there are emission factor equations for open cut mines.

- 1. Wind erosion sources where emissions vary with the hourly average wind speed according to the cube of the wind speed.
- 2. Loading and dumping operations where emissions vary as wind speed is raised to the power of 1.3.
- 3. All other sources where emissions are assumed to be independent of wind speed.

For neighbouring mines, the proportion of emissions in each of these categories has been assumed to be:

- 0.732 for emissions independent of wind speed;
- 0.135 for emissions that depend on wind speed (such as loading and dumping); and
- 0.133 for wind erosion sources.

These factors are based on a detailed analysis of mine dust inventories undertaken as part of the Mt Arthur North EIS (URS, 2000), and have subsequently been accepted as appropriate and routinely applied to subsequent air quality impact assessments for mining operations.

Table 7.: Summary of estimated TSP dust emissions from other mines (kg/y)

Mine	TSP Emissions						
	Year 1	Year 3	Year 5	Year 7			
Integra North Open Cut - WI	809,563	412,873	-	-			
Integra North Open Cut - WS	155,259	79,181	-	-			
Integra North Open Cut - WE	144,169	73,525	-	-			
Ravensworth East - WI	3,887,806	3,678,529	3,626,209	3,626,209			
Ravensworth East - WS	745,607	705,471	695,437	695,437			
Ravensworth East - WE	692,349	655,080	645,763	645,763			
Mt Owen - WI	3,495,439	3,466,087	3,267,218	3,457,507			
Mt Owen - WS	670,358	664,729	626,590	663,084			
Mt Owen - WE	622,475	617,248	581,833	615,720			
Glendell - WI	1,978,416	2,564,493	2,658,698	2,544,376			
Glendell - WS	379,422	491,821	509,887	487,962			
Glendell - WE	352,321	456,690	473,467	453,108			
Narama - WI	996,450	911,040	455,520	-			
Narama - WS	191,100	174,720	87,360	-			
Narama - WE	177,450	162,240	81,120	-			
HVO South - WI	7,783,809	8,016,772	7,924,869	6,858,371			
HVO South - WS	1,492,785	1,537,463	1,519,838	1,315,304			
HVO South - WE	1,386,158	1,427,644	1,411,278	1,221,354			
Rixs Creek - WI	2,332,636	2,385,955	2,439,273	2,479,263			
Rixs Creek - WI	447,355	457,580	467,806	475,475			
Rixs Creek - WI	415,401	424,896	434,391	441,513			
Ashton NEOC WI	191,521	-	-	-			
Ashton NEOC WS	56,617	-	-	-			
Ashton NEOC WE	20,036	-	-	-			
Ravensworth West -WI	857,163	-	-	-			
Ravensworth West -WS	158,083	-	-	-			
Ravensworth West -WE	155,741	-	-	-			

WI = Wind insensitive emissions;

WS = Wind sensitive emissions;

WF = Wind erosion emissions

Estimated emissions from distant mines and other sources

Other sources, in addition to the Project and other mines identified in Section 7.3, will contribute to dust in the area. Estimating the background allowance for distant mines and the dust from other closer non-mining sources is complicated and depends on local land use and the associated emission sources, as well as climate, soil type, farming practice etc.

For annual average TSP, PM₁₀ and dust deposition the following constant values have been used in the modelling predictions:

- $27 \mu g/m^3$ for annual average TSP;
- $2 \mu g/m^3$ for annual average PM₁₀; and
- 0.5 g/m²/month for annual average dust deposition.

Historically, a value of 10 μ g/m³ has been used to account for non-modelled sources of TSP. A study for Hunter Valley Operations (Holmes Air Sciences, 2007) examined model predictions and measurements and found that the non-modelled contribution to annual average TSP levels could be higher than 10 μ g/m³, at around 27 μ g/m³. It is believed that the explanation for the higher non-modelled TSP contribution is that TSP measurements are dominated by localised activities with a high coarse particle fraction. The same argument applies to dust deposition measurements. From an air dispersion modelling perspective it is not possible to account for all localised activities, such as ploughing of fields, cattle grazing, farming activities and the like. A revision to the assumed TSP uniform constant background TSP level was therefore considered to be appropriate and a figure of 27 μ g/m³ has been used instead of 10 μ g/m³. 0.5 g/m²/month for

dust deposition is the default value used to dust deposition as consistent with mining studies over many years in the Hunter Valley (see **Holmes Air Sciences, 2007**).

By contrast, particles in the PM_{10} size range remain in the atmosphere for much longer than the coarse fraction of TSP and so travel much further. The result is a more uniform distribution of PM_{10} concentration.

To estimate the background PM_{10} concentration to apply in the modelling, a simple comparison of annual average PM_{10} model predictions was conducted (i.e. for all modelled sources but without background levels added) with the available annual average PM_{10} monitoring data at TEOM sites 1, 2,3 and 8 (see **Figure 5.**).

Table 7.: Comparison of model predictions with previous monitoring data

Model prediction for July TEOM 2007 to June 2008 withou		Comparison with July 2007 to June 2008 monitoring data (µg/m³)			
station	background levels added* (µg/m³)	Data	Difference		
1	34	25	9		
2	17	19	-2		
3	26	23	3		
8	31	24	7		

Table 7. shows that the model, without background levels added, over-predicts annual average PM_{10} levels at TEOM sites 1, 3 and 8. However, the model under predicts by $2\mu g/m^3$ at TEOM site 2 which is located in Camberwell Village (see **Figure 5.**).

Therefore, a uniform background level of 2 $\mu g/m^3$ has been applied across the entire modelling domain to ensure that the model plus background does not under-predict the dust levels particularly at Camberwell Village.

This is a conservative approach which is likely to result in an over-prediction of annual average dust levels.

8 ASSESSMENT OF IMPACTS - PARTICULATE MATTER

8.1 Assessment Criteria

The air quality criteria used for identifying which properties are likely to experience air quality impacts are those specified in the NSW DECC's modelling guidelines as interpreted by recent Conditions of Consent for mines in NSW.

The criteria are:

- \blacksquare 50 μg/m³ for 24-hour average PM₁₀ for the Project considered alone;
- 30 μg/m³ for annual average PM₁₀ due to the Project and other sources;
- 90 μg/m³ for annual average TSP concentrations due to the Project alone and other sources;
- 2 g/m²/month for annual average deposition (insoluble solids) due to the Project considered alone; and
- 4 g/m²/month for annual average predicted cumulative deposition (insoluble solids) due to the Project and other source levels.

Similar predictions for 24-hour and annual average $PM_{2.5}$ concentrations for the Project by itself and the Project considered with the effects of other mines are provided in **Appendix** .

Following practice established in recent Conditions of Consent, with the exception of the 2 g/m 2 /month goal and the 24-hour PM $_{10}$, the assessment criteria are interpreted to be cumulative assessment criteria.

The following sections provide a summary of the affected residences and at what stage the effects are predicted to occur.

8.2 Assessment Approach

8.2.1 Annual average concentrations

For the annual average concentrations, dust concentrations and deposition rates for the selected years of assessment have been presented as isopleth diagrams showing the following:

- 1. Predicted annual average PM₁₀ concentration.
- 2. Predicted annual average TSP concentration.
- 3. Predicted annual average dust deposition.

It is important to note that the isopleth figures are presented to provide a visual representation of the predicted impacts. To produce the isopleths it is necessary to make interpolations, and as a result the isopleths will not always match exactly with predicted impacts at any specific location. The actual predicted impacts at the sensitive receptors are presented in tabular form (see **Section 8.3.2** to **Section 8.3.5**).

8.2.2 24-hour average PM₁₀ concentrations

The 24-hour PM_{10} criterion of 50 $\mu g/m^3$ is interpreted as being applicable to the Project when considered in isolation (at the 98.6th percentile), while in recent Conditions of Consent, the US EPA 24-hour PM_{10} standard of 150 $\mu g/m^3$ has been taken to be the cumulative criterion (at the 99th

percentile). The application of the 24-hour PM_{10} criteria applies in this way when the mine can demonstrate that it will or does employ best-practice dust control measures including the use of real-time monitoring and reactive dust measures. It is important to the note that it is not possible to accurately predict the cumulative PM_{10} 24-hour average using dispersion modelling as it is highly influenced by other sources in the area, and events such as bushfires, dust storms, etc., therefore cumulative PM_{10} 24-hour average predictions have not been included in the assessment.

For the 24-hour average PM_{10} predictions due to the Project on its own, a table of the predicted impacts at the nearby receptors due to the Project alone has been presented for each year of the assessment (see **Section 8.4**). For those receptors where the impact assessment criterion of 50 μ g/m³ is predicted to be exceeded, an assessment of the number of days in the year above the criteria has also been presented.

8.2.3 Interpretation of impacts at sensitive receptors

The predicted impacts at the sensitive receptors have been summarised in tabular form for each year (see **Section 8.3.2** to **Section 8.3.5**). The locations of neighbouring residences are shown in **Figure 2.**

For the assessment of predicted impacts at the sensitive receptors due to the Project alone, all receptors that are predicted to experience particulate matter deposition above the NSW DECC's assessment criteria are highlighted in the tabulated results.

The assessment of cumulative impacts is focussed on identification of all residences that would be materially affected by the proposed SOEC operations, however residences affected by other activities are also tabulated for completeness. For example, **Figure 8.** shows an isopleth of the predicted annual average PM_{10} concentrations due to the Project and other mines and sources in Year 1. The applicable assessment criteria of $30~\mu\text{g/m}^3$ is highlighted. Any sensitive receptor within the $30~\mu\text{g/m}^3$ isopleth is predicted to experience an exceedance of the annual average PM_{10} criteria. In **Figure 8.** there is a clearly defined area of influence around SOEC where the Project is likely to contribute to the impacts. Similarly, there are separate areas of influence around the other mines that were modelled. The isopleths were used to guide identification of the receptors where the SEOC would influence dust levels, and these receptors are highlighted in the tables as experiencing an exceedance of the criteria. While there are other receptors in the tables that show predicted impacts above the criteria, these are likely to be the result of other activities and are unlikely to be influenced substantially by the Project, as such, these receptors are not considered any further in the assessment.

In addition, it should be noted that the following sensitive receptors would not exist in the stated year or subsequent years, as mining would occur at these locations:

- Year 1
 - One private residence (126); and
 - Five residences owned by mining companies or other entities (122, 123, 125, 127 and 128).
- Year 5
 - One private residence (129).

^a As noted in **Section 8.2.1**, the isopleths do not always match exactly with the actual predicted impacts. The final assessment has been made on the actual predicted impacts, not the isopleths.

Whilst the predicted impacts at these locations have been included in the predicted impacts tables in **Section 8.3.2** to **Section 8.3.5**, no further discussion on the predicted impacts at these locations has been presented.

8.3 Annual average PM₁₀, TSP and dust deposition predictions

8.3.1 Introduction

Section 8.3.2 to **Section 8.3.5** present the predicted annual average impacts at the private residences and those owned by mining companies for each year assessed.

It should be noted that of the criteria that are used to assess impacts, namely 24-hour PM_{10} , annual average PM_{10} , annual average TSP and annual average deposition, only two are applicable for the Project considered in isolation. These are the 50 μ g/m³ 24-hour PM_{10} goal, which, for projects committing to best practice dust controls, should not be exceeded by the project in isolation (the results for 24-hour average PM_{10} concentrations are presented in **Section 8.4**) and the annual 2 g/m²/month deposition limit for insoluble solids. The value of examining the effects of the Project by itself for the other parameters is that this allows the extent to which the Project contributes to the cumulative impacts to be quantified. This is useful when deciding the extent to which the Project contributes to exceedances that may arise due to the combined effect with all sources of dust.

The residences that are predicted to exceed the criteria are identified in the subsequent sections for each year of the proposed operations that was assessed. **Section 8.5** presents a summary of the impacted residences.

8.3.2 Year 1

Figure 8. to **Figure 8.** show the predicted annual average PM_{10} and TSP concentrations and dust deposition levels for operations in Year 1 showing the effects of the Project by itself and the Project in combination with other sources.

Table 8. presents the predicted dust concentration results for all receptors in the vicinity of the Project and highlights in bold those values above the relevant project specific criteria or cumulative criteria where the SEOC is expected to influence air quality. The table should be read in conjunction with **Section 8.2.3** (Interpretation of impacts at sensitive receptors).

In summary for Year 1, the following receptors where criteria are exceeded have been identified:

- Annual average deposition above 2 g/m²/month due to the Project considered in isolation –
 One private residence (51) see Figure 8..
- Annual average PM_{10} above 30 $\mu g/m^3$ due to the Project and other mines and other sources Sixteen private residences (23, 024A, 024B, 26, 30, 32, 34, 35, 46, 50, 51, 52, 117, 119, 120, 121) and nineteen residences owned by mining companies or other entities (21, 22, 25, 27, 28, 29, 33, 36, 36, 38, 39, 40, 41, 43, 44, 45, 47, 49 and 115) see **Figure 8.**
- Annual average TSP above 90 μ g/m³ due to the Project and other mines and other sources One private residence (51) and one residence owned by mining companies or other entities (115) see **Figure 8.**.
- Annual average dust deposition above 4 g/m²/month due to the Project and other mines and other sources One private residence (35) and four residences owned by mining companies or other entities (36, 36, 43 and 115) see Figure 8.

Table 8.: Summary of predicted annual average air quality impacts for Year 1

			of predicted annual avera Project alone			nd other sources
			Dust			Dust
ID	PM ₁₀ (μg/m³)	TSP (µg/m³)	deposition	PM ₁₀ (μg/m³)	TSP (µg/m³)	deposition
10	(F9/ /	(F5/ /	(g/m²/month)		(F9/ /	(g/m²/month)
	N/A	N/A	2	ment criteria 30	90	4
	N/A	N/A	Private res		30	*
2	8	9	0.2	29	56	1.7
8	9	10	0.2	29	57	1.6
11	6	7	0.1	28	56	1.8
18	5	5	0.1	29	57	2.2
23	3	3	0.1	36	66	3.4
024A	3	3	0.1	37	66	3.5
024B	4	4	0.1	33	62	2.8
26	4	4	0.1	32	61	2.8
30	3	4	0.1	35	65	3.3
32	3	4	0.1	34	64	3.1
34	3	3	0.1	38	68	3.7
35	2	3	0.1	40	72	4.2
46	22	29	1.0	41	73	2.2
50	25	30	1.1	42	73	2.2
51	45	57	2.6	62	100	3.6
52	3	3	0.1	36	65	3.3
63	0	0	0.0	31	58	1.5
64	0	0	0.0	29	56	1.4
65	0	0	0.0	27	53	1.3
66	0	0	0.0	26	52	1.3
067A	0	0	0.0	22 24	48	1.3
067B	0		0.0	19	50 45	1.3 1.2
68		0			45	
069Aª	0	0	0.0	20 19	45	1.5 1.4
70 71	0	0	0.0	18	44	1.4
	0	0	0.0	20	47	1.2
072B 072	0	0	0.0	20	47	1.2
73	0	0	0.0	17	43	1.2
73	0	0	0.0	17	43	1.2
75	0	0	0.0	17	43	1.1
76	0	0	0.0	18	44	1.3
77	0	0	0.0	19	45	1.4
78	0	0	0.0	20	46	1.5
80ª	0	0	0.0	19	46	1.5
81	1	1	0.0	39	68	2.4
83	7	8	0.4	24	51	1.5
084A	5	5	0.2	22	49	1.4
084B	7	7	0.4	22	49	1.4
100A ^b	0	0	0.0	39	67	2.0
100B ^b	0	0	0.0	38	66	1.9
100C	0	0	0.0	36	63	1.7
100D	0	0	0.0	34	62	1.6
101A ^b	0	0	0.0	33	61	1.8
111 ^b	1	1	0.0	29	56	1.9
114 ^b	4	4	0.1	27	54	2.0
117	3	3	0.1	35	64	3.2
119	13	16	0.5	32	61	1.8
120	15	19	1.1	33	62	2.2
121	21	25	1.7	37	67	2.6
126 ^c	68	94	7.1	84	136	8.0
129	1	1	0.0	20	46	1.1
130A	1	1	0.0	21	47	1.2
130B	0	0	0.0	22	48	1.1
131	0	0	0.0	24	51	1.6

		Year 1 -	Project alone	Yea	r 1 - Project ar	nd other sources
ID	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (µg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)
				ment criteria		
1.00	N/A	N/A	2	30	90	4
132	0	0	0.0	24 24	51 51	1.6 1.5
133	0	0	0.0	25	52	1.7
137A	0	0	0.0	26	53	1.7
137B	0	0	0.0	25	52	1.7
137C 139	0	0	0.0	24	51	1.6
144	0	0	0.0	24	51	1.6
145	0	0	0.0	24	51	1.6
146	0	0	0.0	24	50	1.6
151	6	7	0.2	28	56	1.9
162	0	0	0.0	36	64	1.9
163	0	0	0.0	26	53	1.3
164	0	0	0.0	35	64	1.6
182A	0	0	0.0	24	51	1.5
182B	0	0	0.0	26	53	1.9
184A	0	0	0.0	23	50	1.5
184B	0	0	0.0	24	51	1.6
184C	0	0	0.0	25	52	1.7
187	1	1	0.0	17	43	0.8
197 ^b	0	0	0.0	21	47	1.6
198 ^b	0	0	0.0	31	60	3.3
217	1	1	0.0	30	60	2.7
217		-	Mine-owned	l	00	2.7
1	11	13	0.3	30	58	1.6
3	8	9	0.2	29	56	1.7
4	7	8	0.2	28	56	1.8
5	7	8	0.2	28	56	1.7
6	8	10	0.2	29	57	1.7
7	9	10	0.2	29	57	1.6
10	6	6	0.1	28	56	1.9
12	8	9	0.2	28	56	1.7
13	7	8	0.2	28	56	1.8
17	5	5	0.1	29	57	2.2
21	4	4	0.1	33	62	2.9
22	3	4	0.1	35	64	3.1
25	4	4	0.1	33	62	2.9
27	4	4	0.1	32	61	2.7
28	3	4	0.1	33	62	2.9
29	3	4	0.1	34	64	3.1
31	4	4	0.1	30	59	2.5
33	3	3	0.1	38	68	3.7
36	3	3	0.1	41	72	4.3
36	3	3	0.1	40	71	4.1
38	3	3	0.1	39	69	3.8
39	3	3	0.1	39	69	3.8
40	3	3	0.1	39	70	4.0
41	3	3	0.1	38	69	3.8
43	3	3	0.1	41	72	4.2
44	3	4	0.1	38	69	3.8
45	33	44	2.0	50	88	3.1
47	34	43	1.8	52	87	2.9
49	17	21	0.7	35	65	1.9
069B	0	0	0.0	19	45	1.3
079A	0	0	0.0	29	56	1.9
		0	0.0	19	45	1.4
079B	0	0 1	0.0	10		
	0	0	0.0	19	46	1.5

		Year 1 -	Project alone	Yea	ır 1 - Project a	nd other sources
ID	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³)	TSP (µg/m³)	Dust deposition (g/m²/month)
				ment criteria		
=	N/A	N/A	2	30	90	4
115	4	4	0.2	65	103	7.6
118	8	10	0.2	29	56	1.7
122 ^c	134	205	15.4	150	248	16.3
123 °	146	180	9.5	162	222	10.4
125 °	26	33	1.8	43	75	2.7
127 °	42	66	5.7	59	108	6.6
128 °	7	10	0.6	24	52	1.5
153	1	1	0.0	16	41	0.7
159A	1	1	0.0	29	55	1.6
159B	1	1	0.0	28 29	55 55	1.5
159C	1	1	0.0	29	56	1.6 1.7
159D 159E	1 0	1 0	0.0	34	62	1.9
159E	0	0	0.0	34	61	1.8
159G	0	0	0.0	32	59	1.7
160A	1	1	0.0	28	57	2.2
160A	2	2	0.0	23	51	1.8
160C	2	2	0.1	21	47	1.5
160D	0	0	0.0	34	61	1.6
161A	1	1	0.0	41	69	2.3
161B	0	0	0.0	44	74	2.8
161C	6	6	0.2	24	51	1.6
161D	0	0	0.0	40	69	2.7
166	0	0	0.0	44	74	1.8
168	0	0	0.0	55	91	2.6
181A	1	1	0.0	20	46	1.2
181B	0	0	0.0	21	48	0.9
181C	0	0	0.0	20	45	1.0
189	2	2	0.0	25	51	0.9
190	2	2	0.0	25	50	0.9
191	2	2	0.0	25	51	0.9
192	0	0	0.0	16	42	0.8
193	0	0	0.0	18	43	0.8
194A	0	0	0.0	81	123	6.5
194B	0	0	0.0	55	84	2.6
195	0	0	0.0	29	56	1.9
196	0	0	0.0	21	47	1.4
199	0	0	0.0	34	63	3.8
200	0	0	0.0	43	73	4.8
218A	1	1	0.0	107	152	6.5
218B	0	0	0.0	21	48	1.9
218C	1	1	0.0	43	76	5.0

Notes: a. b.

These residences have Acquisition Right agreements with Glendell Mine. These residences have Acquisition Right agreements with Mt Owen Mine. These residences would not exist as mining would occur at the location.

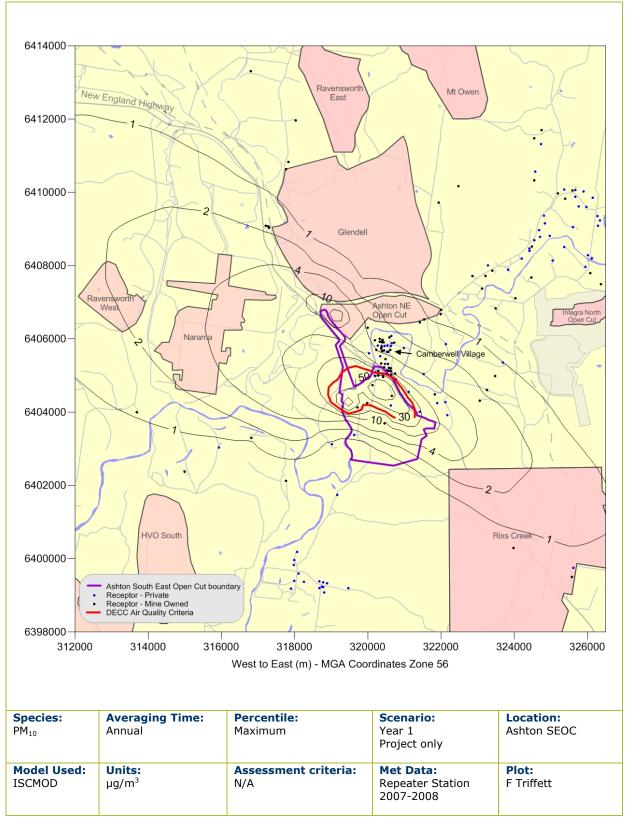


Figure 8.: Predicted annual average PM_{10} concentration due to emissions from the Project in Year 1

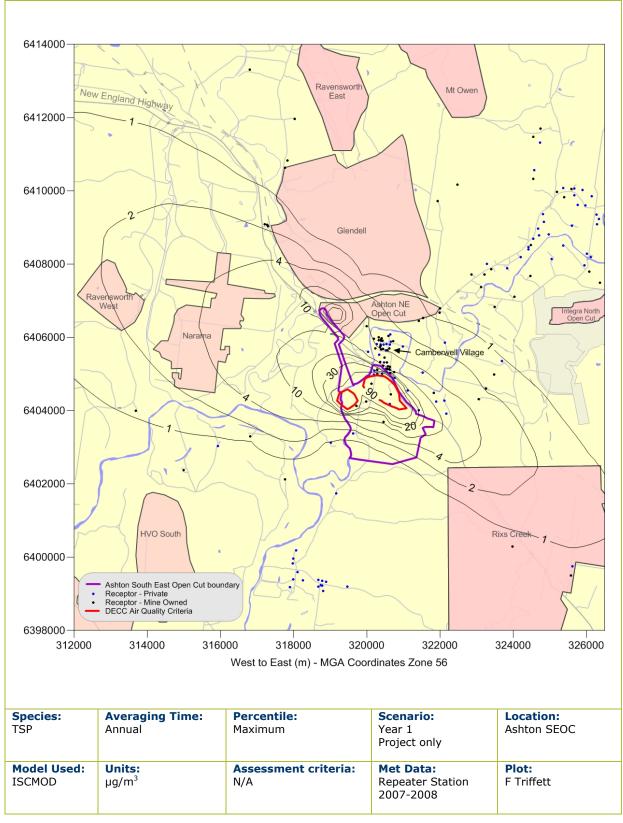


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project in Year 1

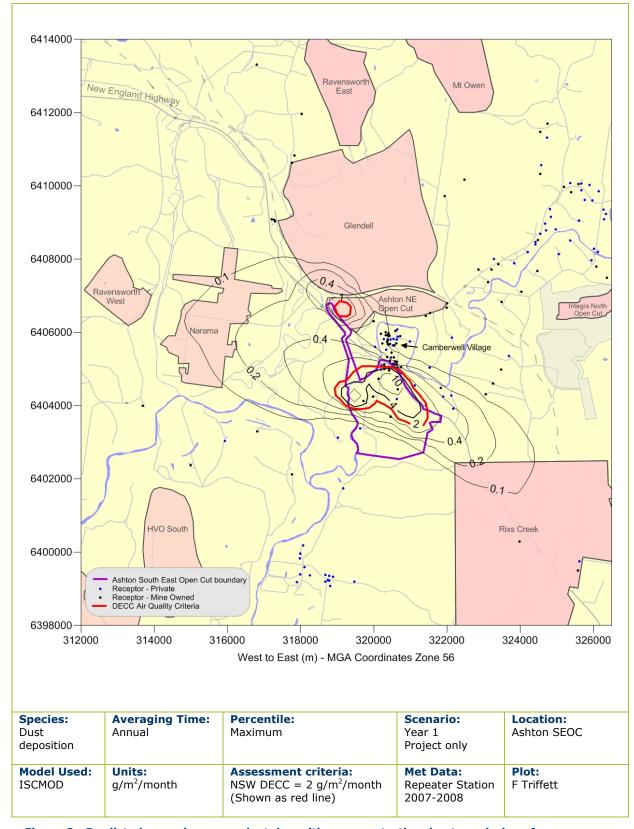


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project in Year 1

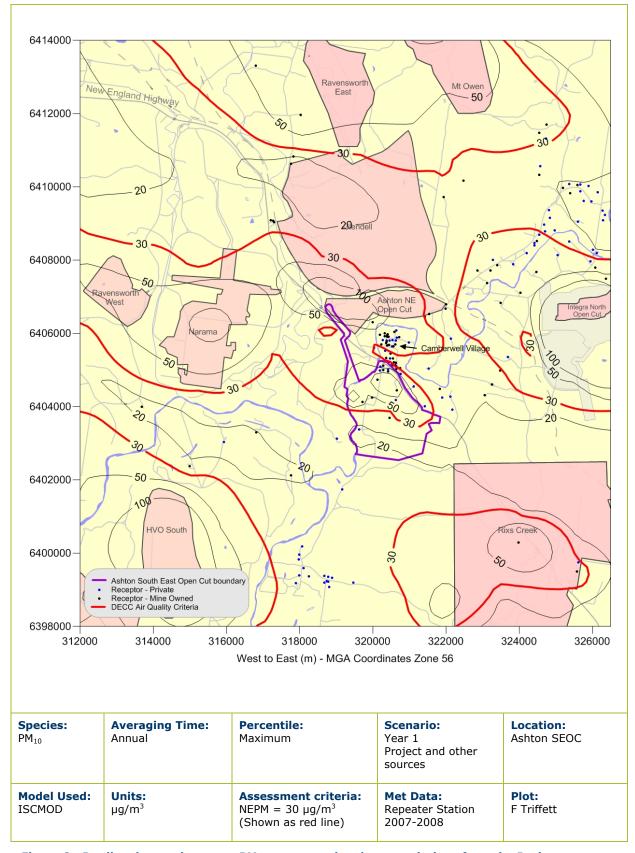


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project and other sources in Year 1

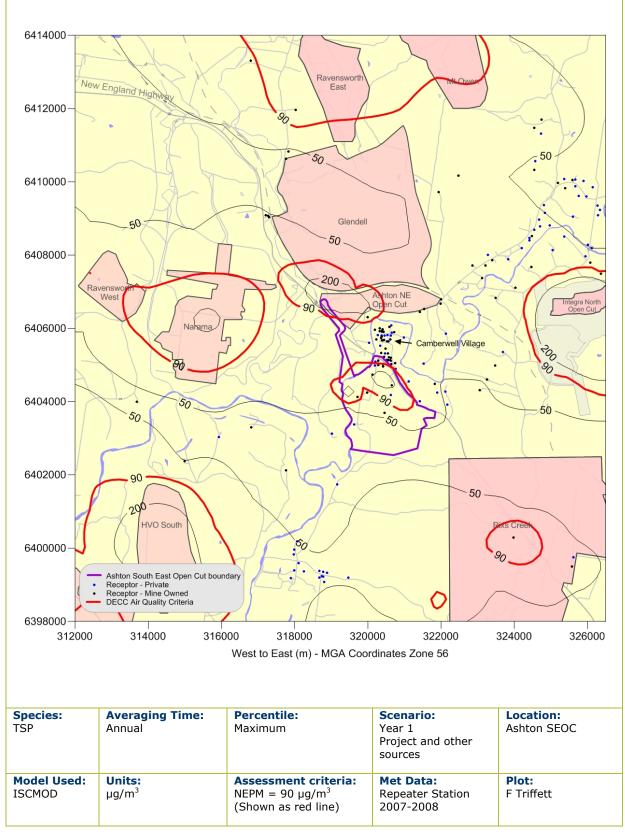


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project and other sources in Year 1

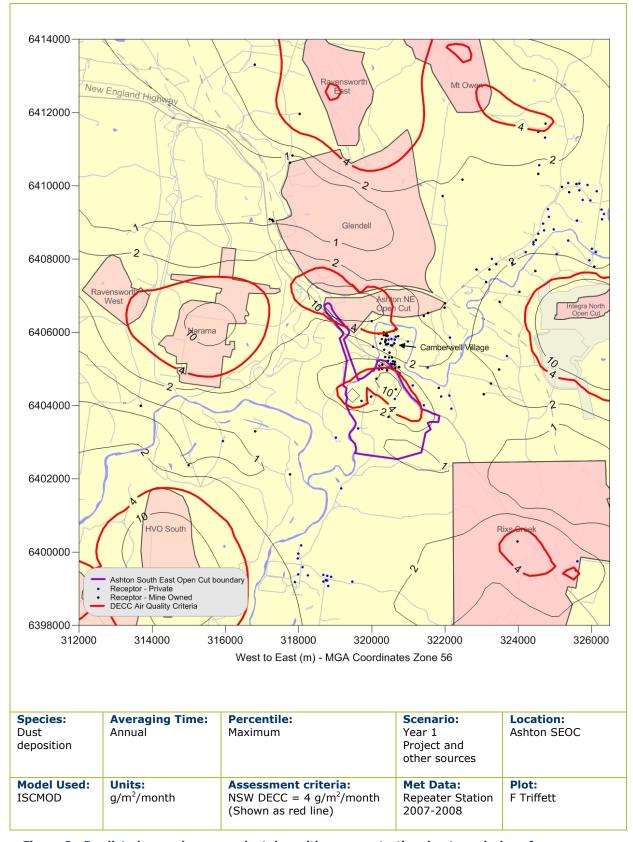


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project and other sources in Year 1

8.3.3 Year 3

Figure 8. to **Figure 8.** show the predicted PM_{10} and TSP concentrations and dust deposition levels for operations in Year 3 showing the effects of the Project by itself and the Project in combination with other sources.

Table 8. presents the predicted dust concentrations results for all receptors in the vicinity of the Project and highlights in bold those values above the relevant project specific criteria or cumulative criteria where the SEOC is expected to influence air quality. The table should be read in conjunction with **Section 8.2.3** (Interpretation of impacts at sensitive receptors).

In summary for Year 3 the following receptors where criteria are exceeded have been identified:

- Annual average deposition above 2 g/m²/month due to the Project considered in isolation no residences affected see Figure 8.
- Annual average PM_{10} above 30 $\mu g/m^3$ due to the Project and other mines and other sources Two private residences (121 and 129) see **Figure 8.**.
- Annual average TSP above 90 μ g/m³ due to the Project and other mines and other sources no residences affected see **Figure 8.**.
- Annual average dust deposition above 4 g/m²/month due to the Project and other mines and other sources no residences affected see **Figure 8.**.

Table 8.. Summary of predicted annual average air quality impacts for Year 3

	Table 8		of predicted annual avera Project alone			nd other sources
		rear 3 -	Dust	Tea	r 3 - Project a	Dust
	PM ₁₀	TSP	deposition	PM ₁₀	TSP	deposition
	(µg/m³)	(µg/m³)	(g/m²/month)	(µg/m³)	(µg/m³)	(g/m²/month)
			Assess	ment criteria		
ID	N/A	N/A	2	30	90	4
			Private res			
2	7	8	0.1	20	46	0.9
8	7	8	0.1	20	46	0.9
11	6	7	0.1	18	44	0.9
18	5	6	0.1	17	43	0.9
23	5	5	0.2	16	41	0.9
024A	5	5	0.2	16	42	0.9
024B	5	5	0.1	16	42	0.9
26	5	5	0.1	16	42	0.9
30	5	5	0.2	16	42	0.9
32	5	5	0.2	16	42	0.9
34	4	5	0.2	15	41	0.9
35	4	5	0.2	15	41	0.9
46	9	10	0.2	22	49	1.0
50	10	11	0.2	23	50	1.0
51	12	13	0.3	26	53	1.1
52	5	5	0.2	16	42	0.9
63	0	1	0.0	14	40	1.0
64	0	0	0.0	13	39	0.9
65	0	0	0.0	13	38	0.9
66	0	0	0.0	12	38	0.9
067A	0	0	0.0	12	37	0.8
067B	0	0	0.0	12	37	0.8
68	0	0	0.0	11	36	0.8
069Aª	0	0	0.0	14	40	1.2
70	0	0	0.0	13	39	1.1
71	0	0	0.0	12	38	1.0
072B	1	1	0.0	11	36	0.8
072	1	1	0.0	11	36	0.8
73	0	0	0.0	12	37	1.0
74	0	0	0.0	12	37	0.9
75	0	0	0.0	11	37	0.9
76	0	0	0.0	12	38	1.0
77	0	0	0.0	14	40	1.2
78	0	0	0.0	14	40	1.3
80ª	0	0	0.0	13	39	1.1
81	2	2	0.0	15	41	1.1
83	9	10	0.3	21	47	1.1
084A	7	8	0.3	19	45	1.0
084B	10	11	0.5	22	48	1.2
100A ^b	1	1	0.0	22	49	1.8
100B ^b	1	1	0.0	18	45	1.4
100C	1	1	0.0	16	42	1.1
100D	1	1	0.0	16	42	1.1
101A ^b	1	1	0.0	25	53	2.5
111 ^b	2	3	0.1	13	39	0.9
114 ^b	5	6	0.1	16	42	0.9
117	4	5	0.2	15	41	0.9
119	8	9	0.2	21	48	1.0
120	11	12	0.3	24	51	1.1
121	21	25	1.1	34	64	1.9
126 ^c	63	89	3.4	79	131	4.3
129	12	13	0.5	33	61	1.7
130A	5	5	0.1	29	56	1.6
130B	1	1	0.0	25	51	1.3
131	0	0	0.0	27	54	1.8
132	0	0	0.0	27	54	1.8
		l .		I .	t.	

		Year 3 –	Project alone	Year 3 - Project and other sources			
			Dust			Dust	
	PM ₁₀	TSP (µg/m³)	deposition (g/m²/month)	PM ₁₀ (μg/m³)	TSP (µg/m³)	deposition (g/m²/month)	
	(µg/m³)	(µg/III)		ment criteria	(ру/пі)	(g/iii /iiioiitii)	
ID	N/A	N/A	2	30	90	4	
133	0	0	0.0	27	54	1.7	
137A	0	0	0.0	29	56	2.0	
137B	0	0	0.0	30	57	2.2	
137C	0	0	0.0	29	56	2.0	
139	0	0	0.0	27	54	1.8	
144	0	0	0.0	27	54	1.8	
145	0	0	0.0	27	54	1.8	
146	0	0	0.0	27	54	1.8	
151	6	6	0.1	18	44	0.9	
162	1	1	0.0	14	40	1.0	
163	1	1	0.0	11	37	0.8	
164	1	1	0.0	12	37	0.8	
182A	0	0	0.0	27	54	1.7	
182B	0	0	0.0	30	57	2.3	
184A	0	0	0.0	26	53	1.7	
184B	0	0	0.0	28	55 55	1.9	
184C	0 3	0 3	0.0	28 21	55 47	2.0 0.9	
187 197 ^b	0	0	0.0	13	39	1.1	
	0	0	0.0	25	53	3.0	
198 ^b	3	3	0.0	33	63	2.7	
217	J		Mine-owned		03	2.7	
1	8	8	0.2	21	47	0.9	
3	7	8	0.1	20	46	0.9	
4	6	7	0.1	19	45	0.9	
5	6	7	0.1	19	45	0.9	
6	7	8	0.1	20	46	0.9	
7	7	8	0.1	20	46	0.9	
10	6	6	0.1	18	44	0.9	
12	7	7	0.1	19	45	0.9	
13	6	7	0.1	19	45	0.9	
17	5	6	0.1	17	43	0.9	
21	5	5	0.1	16	42	0.9	
22	5	5	0.2	16	42	0.9	
25	5	5	0.1	16	42	0.9	
27	5	5	0.1	16	42	0.9	
28	5	5	0.1	16	42	0.9	
29	5	5	0.2	16	42	0.9	
31	5	5	0.1	17	42	0.9	
33	4	5	0.2	15	41	0.9	
36	4	5	0.2	15	41	0.9	
36	5	5	0.2	16	42	0.9	
38	5	5	0.2	16	42	0.9	
39	5	5	0.2	16	42	0.9	
40	5	5	0.2	16	42	0.9	
41	5	5	0.2	16	42	0.9	
43	5	5	0.2	16	42	0.9	
44	5	5	0.2	16	42	0.9	
45	10	11	0.2	23	50	1.0	
47	10	12	0.2	24	51	1.1	
49	8	9	0.2	22	48	1.0	
069B 079A	0	0	0.0	12 34	38 65	1.0 3.3	
	1	1	0.0				
079B 079C	0	0	0.0	12 14	38 40	1.0	
101B	0	0	0.0	24	52	1.2 2.3	
1115	1	1 7	0.0	17	43	2.3	
115	6		0.4	20	43	0.9	
110	7	8	0.2	20	40	0.9	

		Year 3 –	Project alone	Yea	ır 3 - Project an	d other sources
	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)
	21.74	21.60		sment criteria		
1D 122 ^c	N/A	N/A	2	30 36	90 66	4 1.5
123 °	21	26	0.7	40	69	1.6
125 °	25	29	0.7	182	262	13.1
125°	165	218	12.0	288	414	30.5
127°	269	369	29.3	545	952	89.1
153	527	908	88.1	18	43	0.8
159A	3	3	0.1	15	43	1.1
	2	2	0.0	15	41	
159B	2	2	0.0			1.2
159C 159D	2	2	0.0	14 14	40 39	1.0 0.9
	2	2	0.0			
159E 159F	1	1	0.0	20 24	47 52	1.9 2.4
	1	1	0.0			
159G	1	1	0.0	24	52	2.5
160A	2	3	0.1	14	40	0.9
160B	3	4	0.1	14	39	0.9
160C	4	5	0.1	14	40	0.9
160D	1	1	0.0	15	41	1.1
161A	1	1	0.0	18	45	1.5
161B	1	1	0.0	20	47	1.8
161C	7	8	0.2	19	45	1.0
161D	1	1	0.0	19	45	1.5
166	1	1	0.0	12	37	0.9
168	1	1	0.0	12	38	0.9
181A	4	4	0.1	26	52	1.5
181B	1	1	0.0	24	52	1.0
181C	1	1	0.0	23	49	1.2
189	3	3	0.0	26	53	1.6
190	3	3	0.0	26	53	1.6
191	3	3	0.0	26	53	1.6
192	1	1	0.0	34	61	1.6
193	1	1	0.0	33	60	1.6
194A	0	0	0.0	28	55	1.2
194B	0	0	0.0	23	49	0.9
195	1	1	0.0	16	43	1.0
196	0	0	0.0	12	38	0.9
199	0	0	0.0	27	56	3.4
200	0	0	0.0	37	67	4.5
218A	3	3	0.2	104	147	5.8
218B	1	2	0.1	24	51	2.1
218C	2	2	0.1	48	81	5.3

Notes:

These residences have Acquisition Right agreements with Glendell Mine. These residences have Acquisition Right agreements with Mt Owen Mine. These residences would not exist as mining would occur at the location. b.

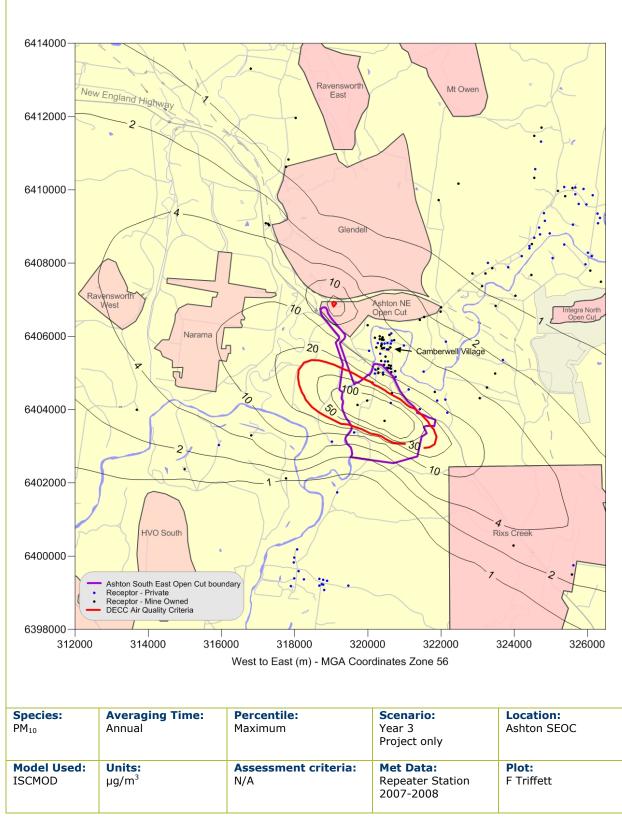


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project in Year 3

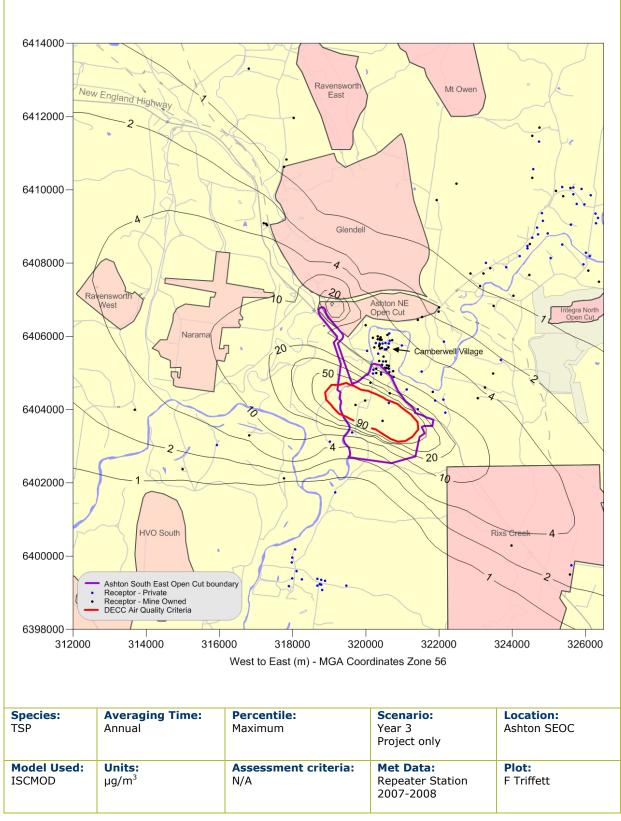


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project in Year 3

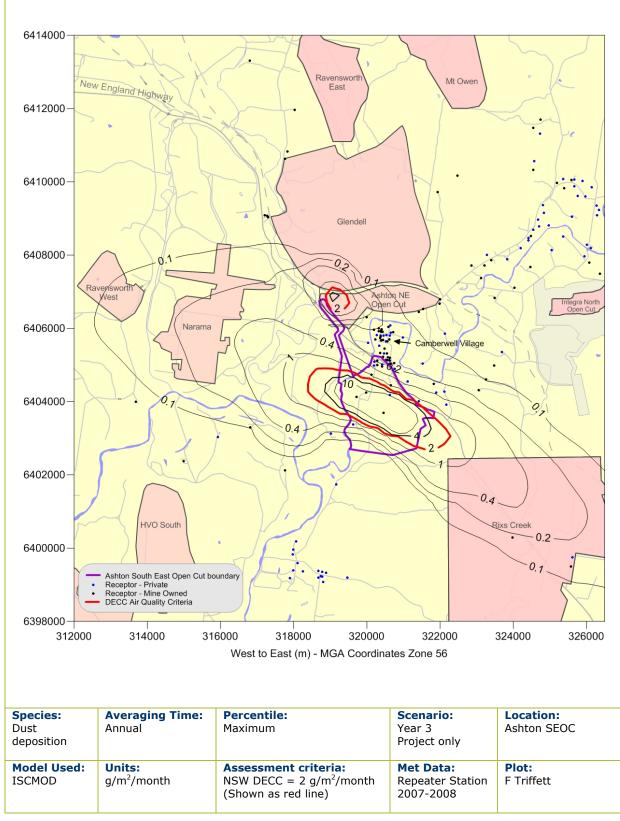


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project in Year 3

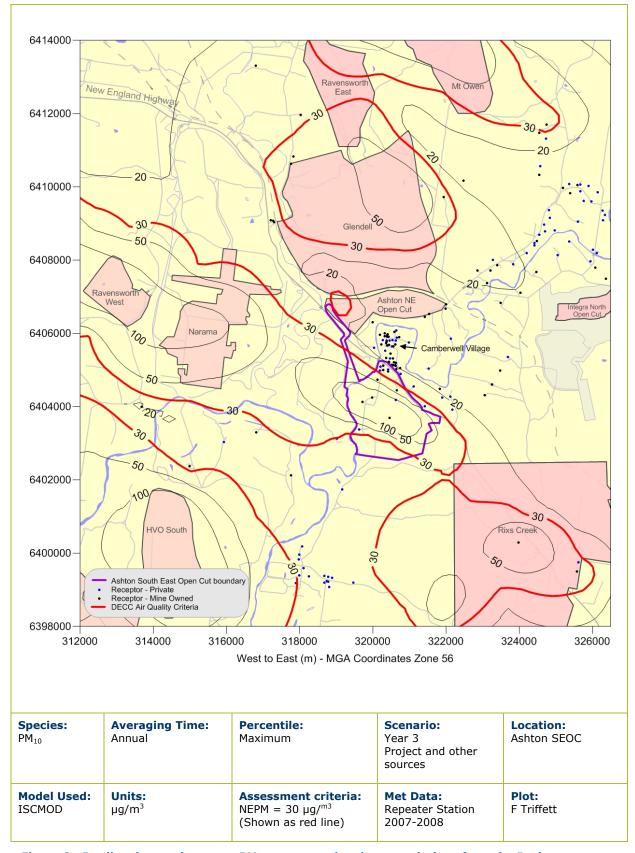


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project and other sources in Year 3

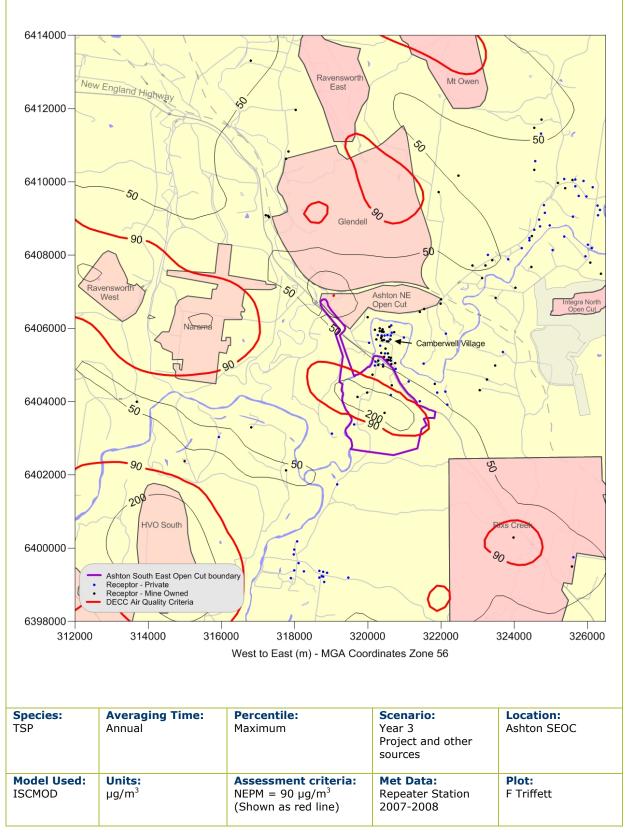


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project and other sources in Year 3

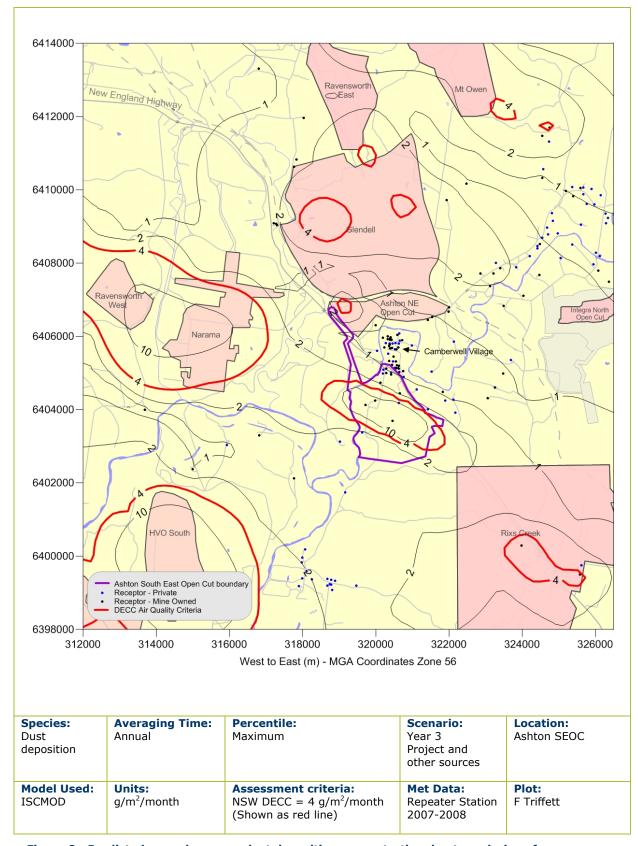


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project and other sources in Year 3

8.3.4 Year 5

Figure 8. to **Figure 8.** show the predicted PM_{10} and TSP concentrations and dust deposition levels for operations in Year 5 showing the effects of the Project by itself and the Project in combination with other sources.

Table 8. presents the predicted dust concentrations results for all receptors in the vicinity of the Project and highlights in bold those values above the relevant project specific criteria or cumulative criteria where the SEOC is expected to influence air quality. The table should be read in conjunction with **Section 8.2.3** (Interpretation of impacts at sensitive receptors).

In summary for Year 5 the following receptors where criteria are exceeded have been identified:

- Annual average deposition above 2 g/m²/month due to the Project considered in isolation no residences affected see Figure 8..
- Annual average PM_{10} above 30 $\mu g/m^3$ due to the Project and other mines and other sources One private residence (130A) see **Figure 8.**.
- Annual average TSP above 90 μ g/m³ due to the Project and other mines and other sources no residences affected see **Figure 8.**.
- Annual average dust deposition above 4 g/m²/month due to the Project and other mines and other sources no residences affected see **Figure 8.**.

Table 8.. Summary of predicted annual average air quality impacts for Year 5

	Table 6		Project alone	rage air quality impacts for Year 5 Year 5 - Project and other sources			
	PM ₁₀ (μg/m³)	TSP (µg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³) sment criteria	TSP (μg/m³)	Dust deposition (g/m²/month)	
ID	N/A	N/A	2	30	90	4	
	1	33,33	Private res				
2	6	7	0.1	14	40	0.7	
8	6	7	0.1	14	40	0.7	
11	5	6	0.1	13	39	0.7	
18	5	5	0.1	12	38	0.7	
23	4	5	0.2	11	37	0.7	
024A	5	5	0.2	11	37	0.7	
024B	5	5	0.1	12	37	0.7	
26	5	5	0.1	12	37	0.7	
30	5	5	0.2	11	37	0.7	
32	4	5	0.2	11	37	0.7	
34	4	5	0.2	11	37	0.7	
35	4	5	0.2	11	36	0.7	
46	7	8	0.1	15	41	0.7	
50	7	8	0.1	15	41	0.7	
51	8	9	0.2	17	43	0.8	
52	5	5	0.2	11	37	0.7	
63	0	1	0.0	17	42	1.3	
64	0	0	0.0	16	42	1.2	
65	0	0	0.0	17	43	1.3	
66	0	0	0.0	16	42	1.2	
067A	0	0	0.0	18	44	1.3	
067B	0	0	0.0	17	43	1.3	
68	0	0	0.0	16	42	1.3	
069Aª	0	0	0.0	24	51	2.2	
70	0	0	0.0	22	49	1.9	
71	0	0	0.0	20	46	1.7	
072B	1	1	0.0	14	40	1.1	
072	1	1	0.0	14	40	1.1	
73	0	0	0.0	18	44	1.5	
74	0	0	0.0	18	44	1.5	
75	0	0	0.0	17	43	1.4	
76	0	0	0.0	20	46	1.7	
77	0	0	0.0	22	48	1.9	
78	0	0	0.0	24	51	2.1	
80ª	0	0	0.0	23	50	2.1	
81	2	2	0.0	11	36	0.9	
83	7	8	0.2	15	41	0.8	
084A	6	7	0.2	13	39	0.8	
084B	8	9	0.3	16	42	0.9	
100A ^b	1	1	0.0	16	42	1.3	
100B ^b	1	1	0.0	16	42	1.2	
100C	1	1	0.0	16	42	1.2	
100D	1	1	0.0	16	42	1.2	
101A ^b	1	1	0.0	17	43	1.4	
111 ^b	2	2	0.1	9	35	0.7	
114 ^b	5	5	0.1	11	37	0.7	
117	4	4	0.2	11	36	0.7	
119	7	8	0.1	15	41	0.7	
120	8	9	0.2	16	43	0.8	
121	14	16	0.6	23	50	1.2	
126°	27	35	1.1	37	70	1.7	
129 ^c	145	170	9.6	159	210	10.4	
130A	15	16	0.5	31	57	1.3	
130B	1	1	0.0	20	46	1.0	
131	0	0	0.0	24	51	1.6	
132	0	0	0.0	24	51	1.6	

PM			rear 5 -	Project alone	Yea	r 5 - Project a i	nd other sources
N/A				deposition	PM ₁₀		deposition
133 0 0 0 0.0 24 51 137A 0 0 0 0.0 25 52 137B 0 0 0 0.0 26 53 137C 0 0 0 0 0.0 25 52 1339 0 0 0 0.0 0.0 24 51 144 0 0 0 0.0 0.0 24 51 145 0 0 0 0.0 0.0 24 51 146 0 0 0 0.0 0.0 24 51 146 0 0 0 0.0 0.0 24 51 146 0 0 0 0.0 0.0 24 51 146 0 0 0 0.0		(F9//	(Fg/ /			(F3/ ··· /	(3, ,
137A	ID	N/A	N/A	2	30	90	4
137B	133	0	0	0.0	24	51	1.6
137C	137A						1.8
139	137B		0	0.0			1.9
144	137C						1.8
145	139						1.6
146							1.6
151							1.6
162	146						1.6
163							0.7
164							1.1
182A 0 0 0 0 0 25 51 182B 0 0 0 0 0 0 26 53 184A 0 0 0 0 0 0 0 25 51 184B 0 0 0 0 0 0 0 25 51 184C 0 0 0 0 0 0 0 25 52 187 4 4 4 4 4 4 4 4 4							1.2
182B 0 0 0 0 0.0 26 53 184A 0 0 0 0 0.0 23 50 184B 0 0 0 0 0.0 25 51 184C 0 0 0 0 0.0 25 52 187 4 4 4 0.1 18 44 197b 0 0 0 0.0 25 53 198b 0 0 0 0 0.0 25 53 198b 0 0 0 0 0.0 44 77 217 3 3 3 0.2 33 64 Mine-owned residences 1 7 7 7 0.1 15 40 4 6 6 7 0.1 14 40 4 6 6 6 0.1 13 39 5 6 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0 0.1 13 38 12 6 6 0 0.1 13 38 12 6 6 0 0.1 13 38 12 6 7 0.1 14 40 10 5 5 6 0.1 13 38 11 7 5 5 0.1 12 37 22 5 5 5 0.1 12 37 25 5 5 0.1 12 37 27 5 5 5 0.1 12 37 28 5 5 5 0.1 12 37 29 5 5 0.2 11 37 29 5 5 0.2 11 37 31 4 5 0.2 11 37 31 4 5 0.2 11 37							1.1
184A 0 0 0.0 23 50 184B 0 0 0.0 25 51 184C 0 0 0.0 25 52 187 4 4 0.1 18 44 197° 0 0 0.0 25 53 198° 0 0 0.0 44 77 217 3 3 0.2 33 64 Mine-owned residences 1 7 7 0.1 15 40 3 6 7 0.1 14 40 4 6 6 0.1 13 39 5 6 6 0.1 13 39 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6							1.5
184B 0 0 0.0 25 51 184C 0 0 0.0 25 52 187 4 4 0.1 18 44 197b 0 0 0.0 25 53 198b 0 0 0.0 44 77 217 3 3 0.2 33 64 Mine-owned residences 1 7 7 0.1 15 40 3 6 7 0.1 14 40 4 6 6 0.1 13 39 5 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 13 39 17 <							1.9
184C 0 0 0.0 25 52 187 4 4 4 0.1 18 44 197b 0 0 0.0 25 53 198b 0 0 0.0 44 77 217 3 3 0.2 33 64 Mine-owned residences 1 7 7 0.1 15 40 3 6 7 0.1 14 40 4 6 6 0.1 13 39 5 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39							1.5
187 4 4 0.1 18 44 197b 0 0 0.0 25 53 198b 0 0 0.0 44 77 217 3 3 0.2 33 64 Mine-owned residences 1 7 7 0.1 15 40 3 6 7 0.1 14 40 4 6 6 0.1 13 39 5 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5							1.7
197b 0 0 0 0.0 25 53 198b 0 0 0 0 0.0 44 77 217 3 3 3 0.2 33 64							1.8
1986 0							0.8
No.							2.6
Mine-owned residences							5.7 3.0
1 7 7 0.1 15 40 3 6 7 0.1 14 40 4 6 6 0.1 13 39 5 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.1 12 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 <t< td=""><td>21/</td><td>3</td><td>3</td><td></td><td></td><td>64</td><td>3.0</td></t<>	21/	3	3			64	3.0
3 6 7 0.1 14 40 4 6 6 6 0.1 13 39 5 6 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11	1	7	7			40	0.7
4 6 6 0.1 13 39 5 6 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>0.7</td>				-		-	0.7
5 6 6 6 0.1 13 39 6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
6 6 7 0.1 14 40 7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
7 6 7 0.1 14 40 10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
10 5 6 0.1 13 38 12 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
12 6 6 6 0.1 14 39 13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
13 5 6 0.1 13 39 17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
17 5 5 0.1 12 38 21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
21 5 5 0.1 12 37 22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
22 5 5 0.2 11 37 25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
25 5 5 0.1 12 37 27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
27 5 5 0.1 12 37 28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
28 5 5 0.1 12 37 29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
29 5 5 0.2 11 37 31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
31 4 5 0.1 12 37 33 4 5 0.2 11 36							0.7
33 4 5 0.2 11 36							0.7
							0.7
, ,	36	4	5	0.2	11	37	0.7
36 5 5 0.2 11 37							0.7
38 5 5 0.2 11 37							0.7
39 5 5 0.2 11 37		5	5				0.7
40 5 5 0.2 11 37							0.7
41 5 5 0.2 11 37	41				11	37	0.7
43 5 5 0.2 11 37	43					37	0.8
44 4 5 0.2 11 37	44					37	0.7
45 8 9 0.2 16 42	45	8	9		16	42	0.7
47 8 9 0.2 16 42	47		9	0.2	16	42	0.7
49 7 7 0.1 15 40	49	7	7	0.1	15		0.7
069B 0 0 0.0 21 47	069B	0	0	0.0	21		1.8
079A 1 1 0.0 25 53)79A	1	1	0.0	25	53	2.4
079B 0 0 0.0 22 48)79B	0	0	0.0	22	48	1.9
079C 0 0 0.0 24 51)79C	0	0	0.0	24	51	2.1
	101B	1	1	0.0	17	43	1.4
101B 1 1 0.0 17 43	115	6	6	0.4	12	38	0.9
101B 1 1 0.0 17 43 115 6 6 0.4 12 38		6	7	0.1	14	40	0.7

		Year 5 –	Project alone	Year 5 - Project and other sources			
	PM ₁₀ (μg/m³)	TSP (µg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³) ment criteria	TSP (μg/m³)	Dust deposition (g/m²/month)	
ID	N/A	N/A	2	30	90	4	
122 ^c	15	17	0.4	24	51	1.0	
123 °	14	16	0.4	23	50	1.0	
125 °	97	123	5.5	108	159	6.1	
127 ^c	216	301	22.8	227	338	23.4	
128 ^c	504	879	83.3	516	916	84.0	
153	3	3	0.1	16	41	0.7	
159A	2	2	0.0	12	38	1.1	
159B	2	2	0.0	13	39	1.3	
159C	2	2	0.0	10	35	0.7	
159D	2	2	0.0	10	35	0.7	
159E	1	1	0.0	19	46	1.9	
159F	1	1	0.0	18	44	1.6	
159G	1	1	0.0	20	47	1.9	
160A	2	2	0.1	10	35	0.7	
160B	3	3	0.1	10	35	0.7	
160C	4	4	0.1	11	36	0.7	
160D	1	1	0.0	16	42	1.2	
161A	1	1	0.0	17	44	1.7	
161B	1	1	0.0	16	42	1.3	
161C	6	7	0.2	13	39	0.7	
161D	1	1	0.0	15	40	1.2	
166	1	1	0.0	14	39	1.0	
168	1	1	0.0	13	39	1.0	
181A	6	6	0.2	21	47	1.0	
181B	2	2	0.0	22	49	1.0	
181C	1	1	0.0	19	45	0.9	
189	3	3	0.0	20	46	1.2	
190	3	3	0.0	20	46	1.2	
191	3	3	0.0	20	46	1.2	
192	1	1	0.0	37	65	1.7	
193	1	1	0.0	36	64	1.4	
194A	0	0	0.0	122	172	9.6	
194B	0	0	0.0	64	94	2.9	
195	1	1	0.0	24	52	2.1	
196	0	0	0.0	23	49	2.0	
199	0	0	0.0	50	85	6.6	
200	0	0	0.0	45	76	4.5	
218A	4	4	0.2	103	146	6.2	
218B	2	2	0.1	22	49	2.0	
218C	3	3	0.2	49	83	5.8	

Notes:

These residences have Acquisition Right agreements with Glendell Mine. These residences have Acquisition Right agreements with Mt Owen Mine. These residences would not exist as mining would occur at the location.

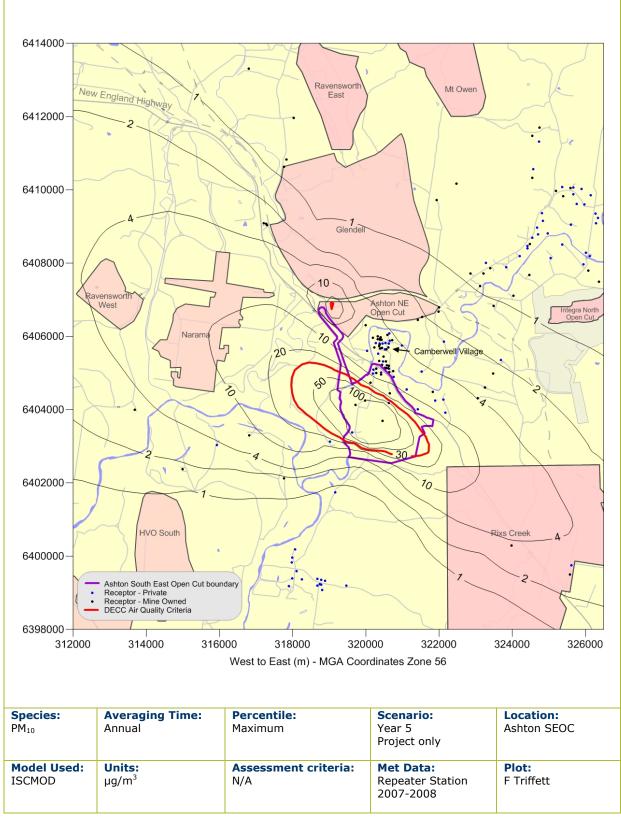


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project in Year 5

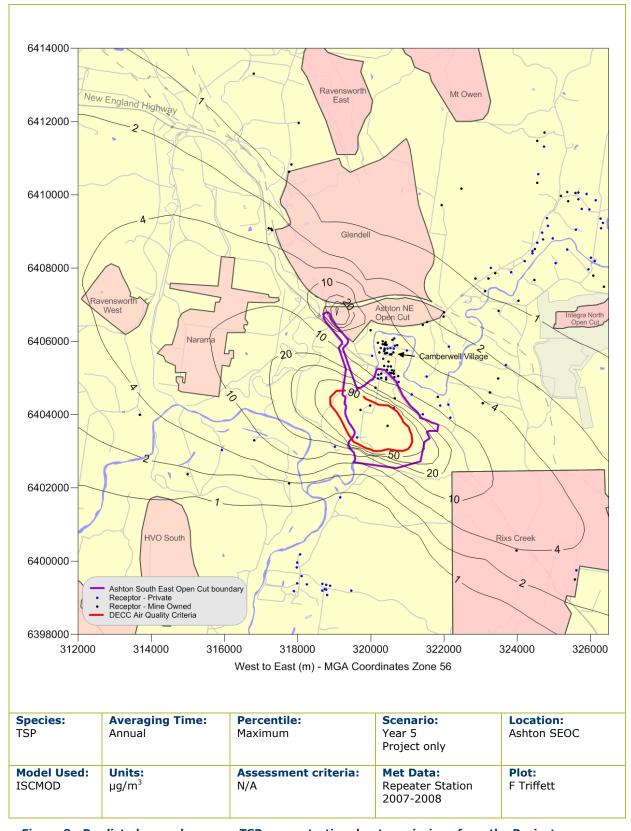


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project in Year 5

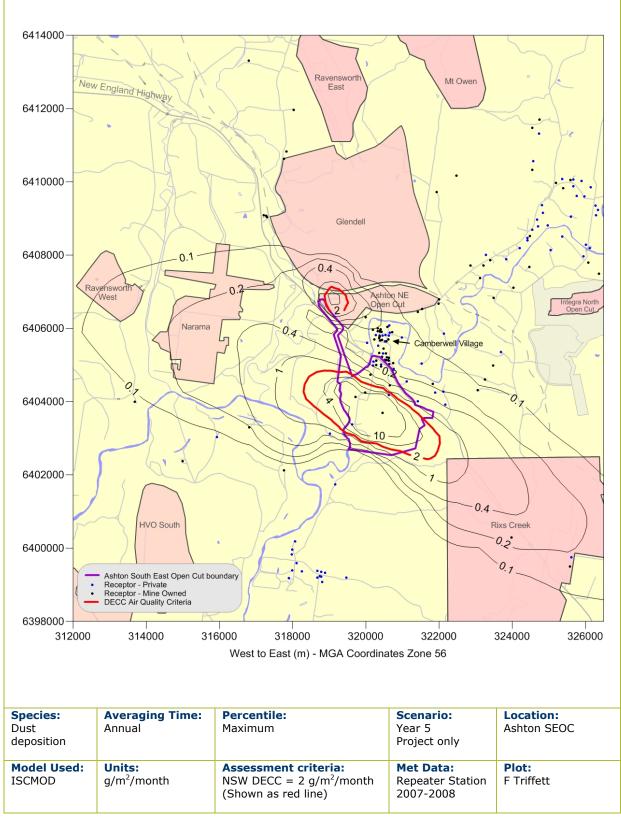


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project in Year 5

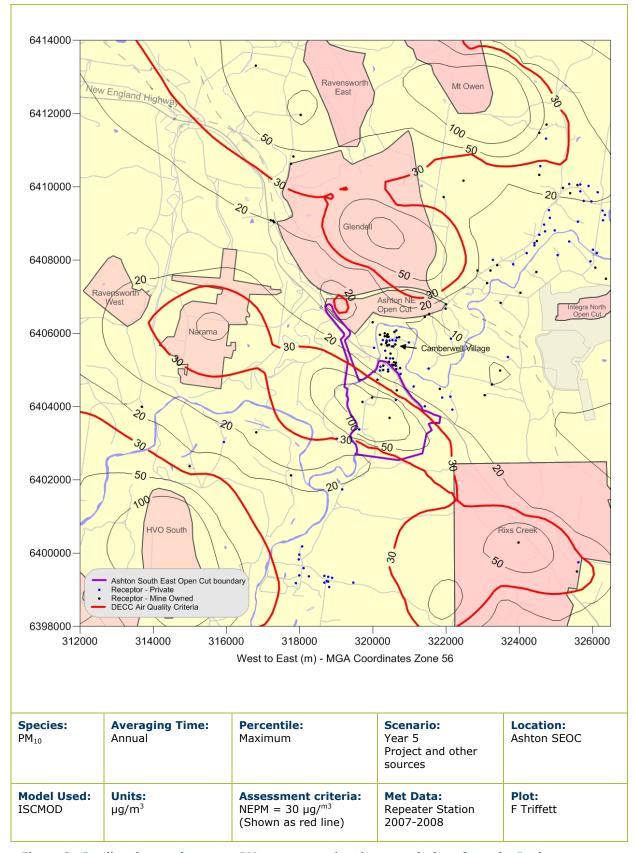


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project and other sources in Year 5

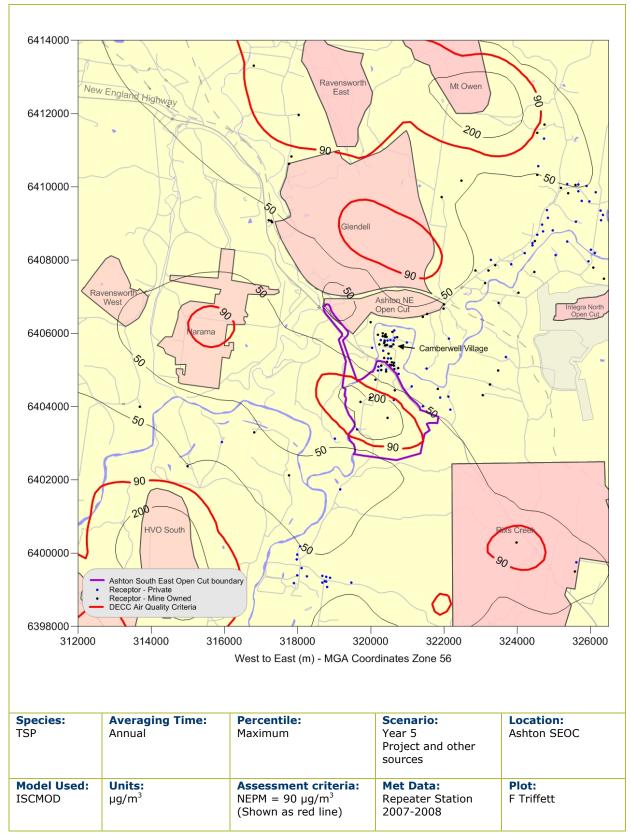


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project and other sources in Year 5

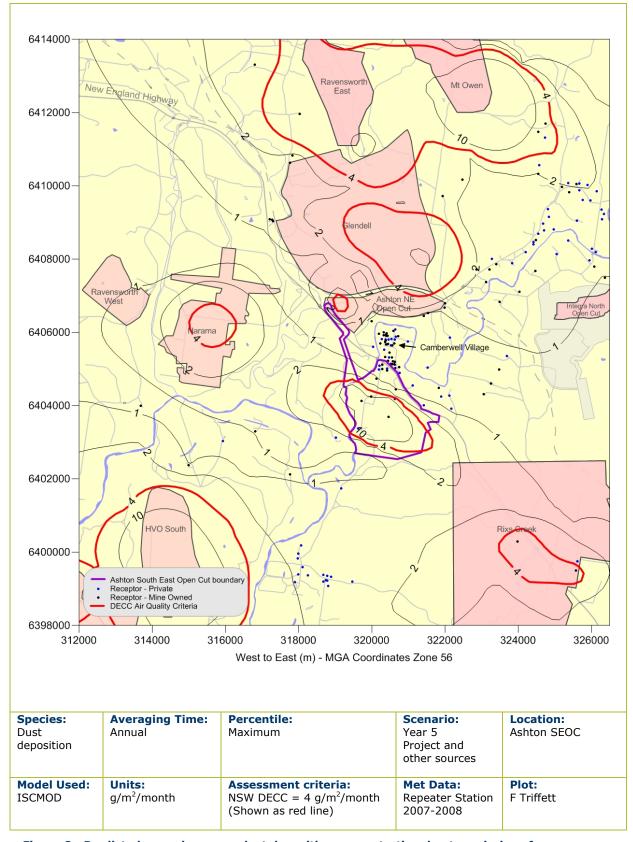


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project and other sources in Year 5

8.3.5 Year 7

Figure 8. to **Figure 8.** show the predicted PM_{10} and TSP concentrations and dust deposition levels for operations in Year 7 showing the effects of the Project by itself and the Project in combination with other sources. These figures provide only a visual representation of the predicted concentrations, refer to **Table 8.** for the actual modelled values at specific receptor locations.

Table 8. presents the predicted dust concentration results for all receptors in the vicinity of the Project and highlights in bold those values above the relevant project specific criteria or cumulative criteria where the SEOC is expected to influence air quality. The table should be read in conjunction with **Section 8.2.3** (Interpretation of impacts at sensitive receptors).

In summary for Year 7 the following receptors where criteria are exceeded have been identified:

- Annual average deposition above 2 g/m²/month due to the Project considered in isolation no residences affected see Figure 8.
- Annual average PM_{10} above 30 $\mu g/m^3$ due to the Project and other mines and other sources One private residence (130A) see **Figure 8.**.
- Annual average TSP above 90 $\mu g/m^3$ due to the Project and other mines and other sources no residences affected see **Figure 8.**.
- Annual average dust deposition above 4 g/m²/month due to the Project and other mines and other sources no residences affected see Figure 8..

Table 8.. Summary of predicted annual average air quality impacts for Year 7

	Table 6		of predicted annual avera Project alone			nd other sources
	PM ₁₀ (μg/m³)	TSP (µg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³) ment criteria	TSP (μg/m³)	Dust deposition (g/m²/month)
ID	N/A	N/A	2	30	90	4
	1,	,	Private res			
2	2	2	0.0	9	34	0.6
8	2	2	0.0	9	34	0.6
11	2	2	0.0	8	34	0.6
18	2	2	0.1	8	33	0.6
23	2	2	0.1	8	34	0.7
024A	2	2	0.1	8	34	0.7
024B	2	2	0.1	8	33	0.6
26	2	2	0.1	8	33	0.6
30	2	2	0.1	8	34	0.7
32	2	2	0.1	8	34	0.6
34	2	2	0.1	8	34	0.7
35	2	3	0.2	8	34	0.7
46	2	2	0.0	9	34	0.6
50	2	2	0.0	9	34	0.6
51	2	2	0.0	9	35	0.6
52	2	2	0.1	8	34	0.7
63	0	0	0.0	17	43	1.3
64	0	0	0.0	16	42	1.3
65	0	0	0.0	17	43	1.3
66	0	0	0.0	16	42	1.3
067A	0	0	0.0	17	43	1.3
067B	0	0	0.0	17	43	1.3
68	0	0	0.0	16	42	1.3
069A ^a	0	0	0.0	24 22	52	2.2
70	0	0	0.0	22	49 46	2.0
71	0	0	0.0	14	39	1.7
072B 072	0	0	0.0	14	40	1.1
73	0	0	0.0	18	44	1.6
73	0	0	0.0	18	44	1.5
75	0	0	0.0	17	43	1.4
76	0	0	0.0	20	47	1.8
77	0	0	0.0	22	49	2.0
78	0	0	0.0	24	51	2.2
80ª	0	0	0.0	24	51	2.2
81	1	1	0.0	11	36	1.0
83	2	2	0.1	9	34	0.6
084A	2	2	0.1	8	33	0.6
084B	2	2	0.1	9	34	0.6
100A ^b	0	0	0.0	16	42	1.3
100Bb	0	0	0.0	16	43	1.4
100C	0	0	0.0	16	43	1.4
100D	0	0	0.0	17	43	1.4
101A ^b	0	0	0.0	16	42	1.4
111 ^b	1	1	0.0	9	35	0.9
114 ^b	1	2	0.1	8	33	0.6
117	2	2	0.1	8	33	0.7
119	2	2	0.0	9	34	0.6
120	2	2	0.0	9	34	0.6
121	3	3	0.1	10	36	0.6
126 ^c	4	4	0.1	13	38	0.7
129	83	117	8.8	96	155	9.5
130A	20	23	1.4	33	62	2.0
130B	0	1	0.0	19	45	1.0
131	0	0	0.0	22	49	1.5
132	0	0	0.0	23	49	1.5

		Year 7 -	Project alone	Yea	r 7 - Project a	nd other sources
	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)
	(µg/III)	(µg/III)		ment criteria	(µg/III)	(g/III /IIIoIItii)
ID	N/A	N/A	2	30	90	4
133	0	0	0.0	23	49	1.5
137A	0	0	0.0	23	49	1.6
137B	0	0	0.0	23	50	1.7
137C	0	0	0.0	23	49	1.6
139	0	0	0.0	22	49	1.5
144	0	0	0.0	22	49	1.5
145	0	0	0.0	22	49	1.5
146	0	0	0.0	22	48	1.5
151	1	2	0.0	8	33	0.6
162	0	0	0.0	15	40	1.2
163	0	0	0.0	15	41	1.2
164	0	0	0.0	14	39	1.1
182A	0	0	0.0	23	50	1.5
182B	0	0	0.0	24	50	1.8
184A	0	0	0.0	21	48	1.4
184B	0	0	0.0	22	49	1.5
184C	0	0	0.0	23	49	1.6
187	2	2	0.1	15 27	41 55	0.8
197 ^b		0	0.0			2.8
198 ^b	0	0	0.0	45 29	77 59	5.6
217	1	1	Mine-owned		59	2.6
1	2	2	0.0	residences 9	34	0.6
3	2	2	0.0	9	34	0.6
4	2	2	0.0	8	34	0.6
5	2	2	0.0	8	34	0.6
6	2	2	0.0	9	34	0.6
7	2	2	0.0	9	34	0.6
10	2	2	0.1	8	34	0.6
12	2	2	0.0	9	34	0.6
13	2	2	0.0	8	34	0.6
17	2	2	0.1	8	33	0.6
21	2	2	0.1	8	34	0.6
22	2	2	0.1	8	34	0.7
25	2	2	0.1	8	33	0.6
27	2	2	0.1	8	33	0.6
28	2	2	0.1	8	33	0.6
29	2	2	0.1	8	34	0.6
31	2	2	0.1	8	33	0.6
33	2	2	0.1	8	34	0.7
36	2	3	0.2	8	34	0.7
36	2	3	0.2	8	34	0.7
38	2	2	0.1	8	34	0.7
39	2	2	0.1	8	34	0.7
40	2	3	0.2	8	34	0.7
41	2	2	0.1	8	34	0.7
43	2	3	0.2	9	34	0.7
44	2	2	0.1	8	34	0.7
45	2	2	0.0	9	34	0.6
47	2	2	0.0	9	34	0.6
49	2	2	0.0	9	34	0.6
069B	0	0	0.0	21	48	1.8
079A	0	0	0.0	37	68	4.2
079B	0	0	0.0	22	49	1.9
079C	0	0	0.0	24	51	2.2
101B	0	0	0.0	15	42	1.4
115	4	5	0.3	10	36	0.9
118	2	2	0.0	9	34	0.6

		Year 7 -	Project alone	Year 7 - Project and other sources			
	PM ₁₀ (μg/m³)	TSP (μg/m³)	Dust deposition (g/m²/month)	PM ₁₀ (μg/m³)	TSP (µg/m³)	Dust deposition (g/m²/month)	
	D/ / A	21/4		ment criteria	00		
ID 122 ^c	N/A 3	N/A 3	0.1	30 11	90 36	4	
123 °	3	3	0.1	11	36	0.6	
125 ^c	10	12	0.8	19	47	1.4	
127 ^c	36	56	5.9	46	91	6.5	
128 °	9	11	0.5	20	47	1.1	
153	1	1	0.0	13	38	0.7	
159A	1	1	0.0	20	49	2.6	
159B	1	1	0.0	23	52	3.0	
159C	1	1	0.0	12	39	1.3	
159D	1	1	0.0	10	36	0.9	
159E	0	0	0.0	14	41	1.3	
159F	0	0	0.0	15	41	1.3	
159G	0	0	0.0	15	42	1.4	
160A	1	1	0.0	9	34	0.8	
160B	1	1	0.0	8	33	0.7	
160C	1	1	0.0	8	33	0.6	
160D	0	0	0.0	17	43	1.3	
161A	0	0	0.0	14	40	1.3	
161B	0	0	0.0	13	39	1.2	
161C	2	2	0.1	8	33	0.6	
161D	0	0	0.0	14	40	1.2	
166	0	0	0.0	14	39	1.1	
168	0	0	0.0	13	38	1.0	
181A	3	4	0.2	16	42	0.8	
181B	1	1	0.0	19	46	0.9	
181C	1	1	0.0	17	43	0.9	
189	1	1	0.0	20	47	1.2	
190	1	1	0.0	20	47	1.3	
191	1	1	0.0	20	47	1.3	
192	0	0	0.0	39	67	1.9	
193	0	0	0.0	38	66	1.8	
194A	0	0	0.0	88	130	6.7	
194B	0	0	0.0	57	86	2.6	
195	0	0	0.0	25	52	2.1	
196	0	0	0.0	23	50	2.1	
199	0	0	0.0	50	84	6.3	
200	0	0	0.0	43	74	4.2	
218A	2	2	0.2	103	146	5.9	
218B	1	1	0.1	21	48	2.1	
218C	1	1	0.1	45	79	5.3	

Notes:

These residences have Acquisition Right agreements with Glendell Mine. These residences have Acquisition Right agreements with Mt Owen Mine. These residences would not exist as mining would occur at the location.

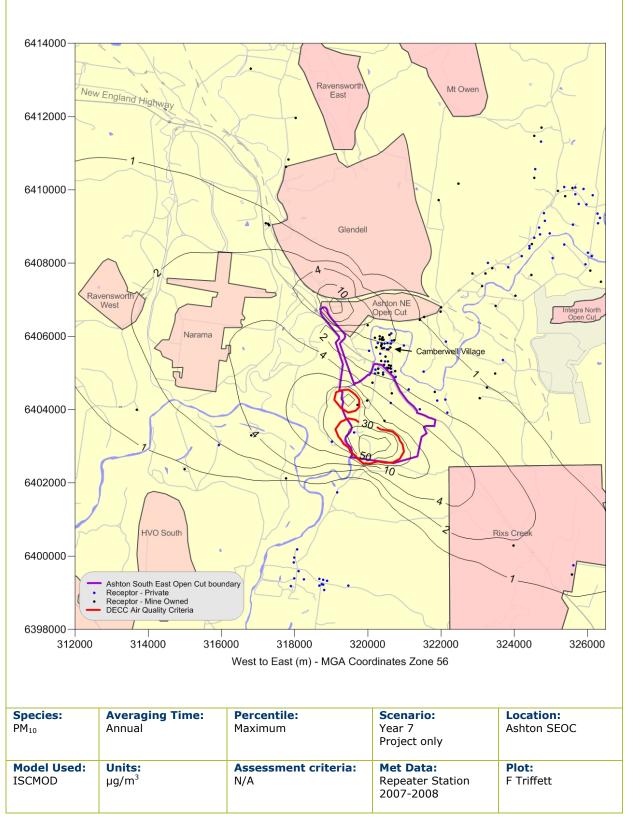


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project in Year 7

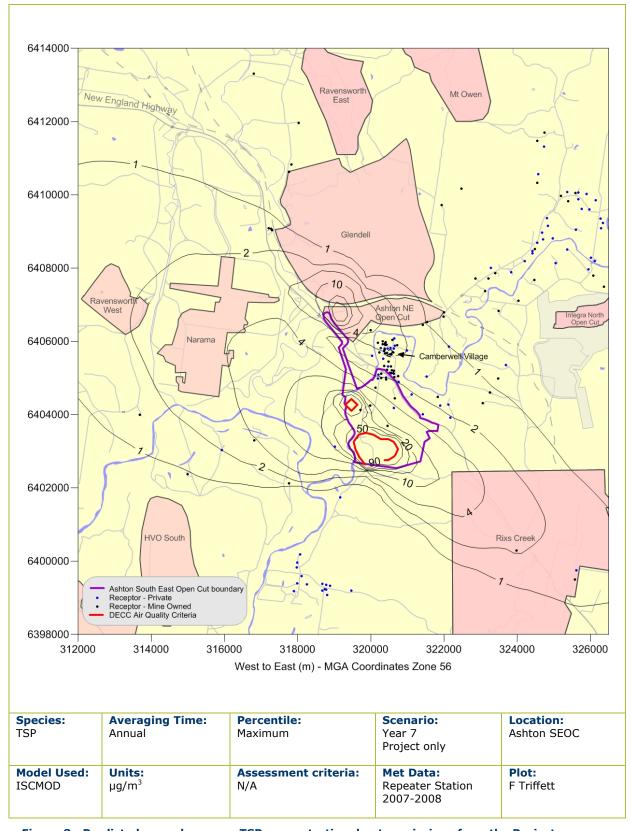


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project in Year 7

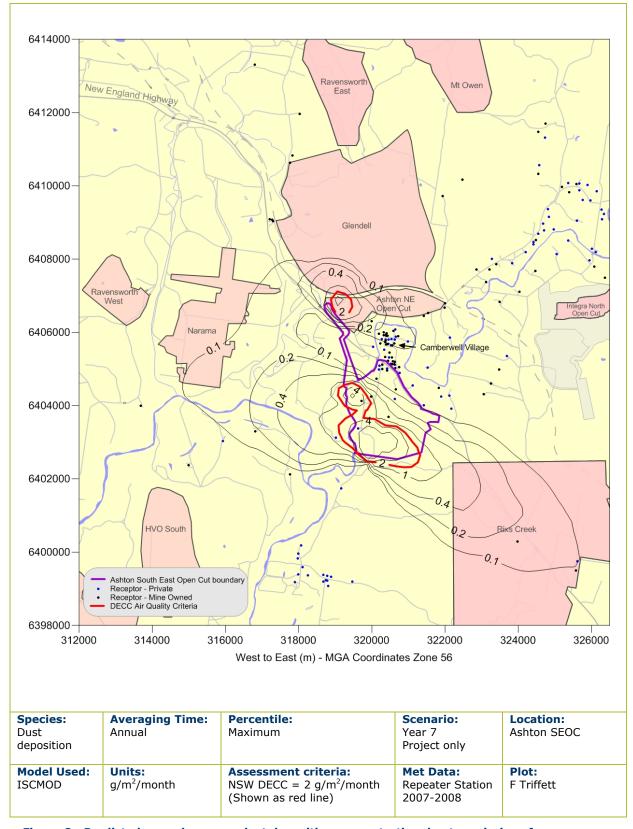


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project in Year 7

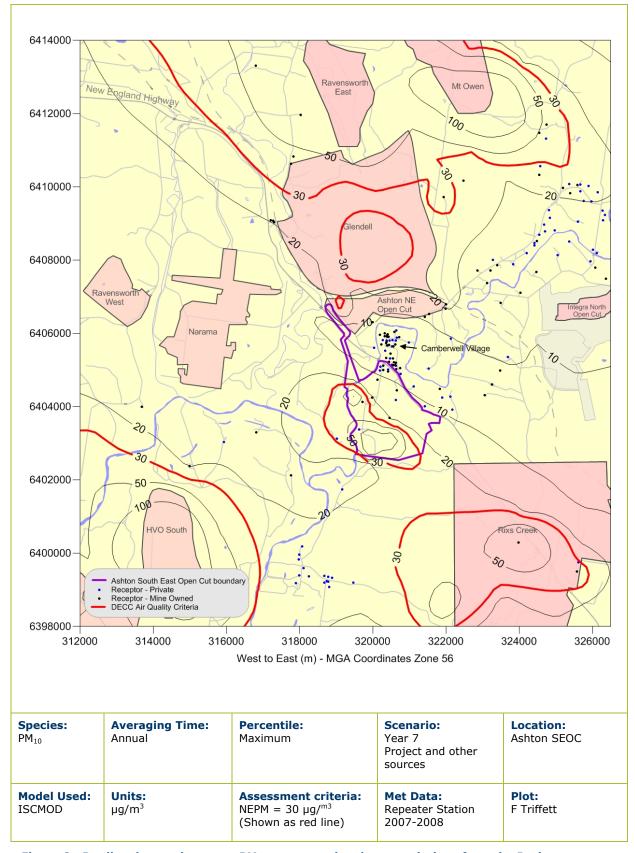


Figure 8.: Predicted annual average PM₁₀ concentration due to emissions from the Project and other sources in Year 7

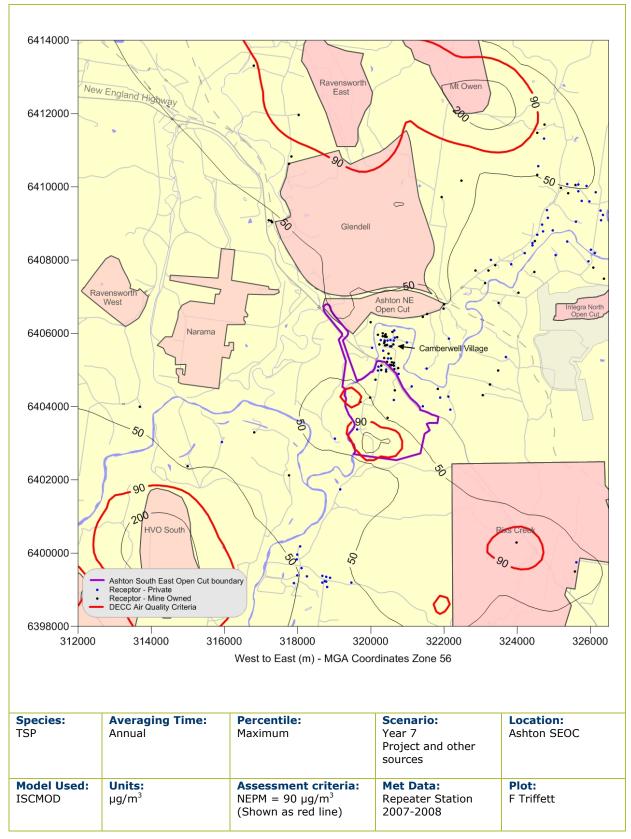


Figure 8.: Predicted annual average TSP concentration due to emissions from the Project and other sources in Year 7

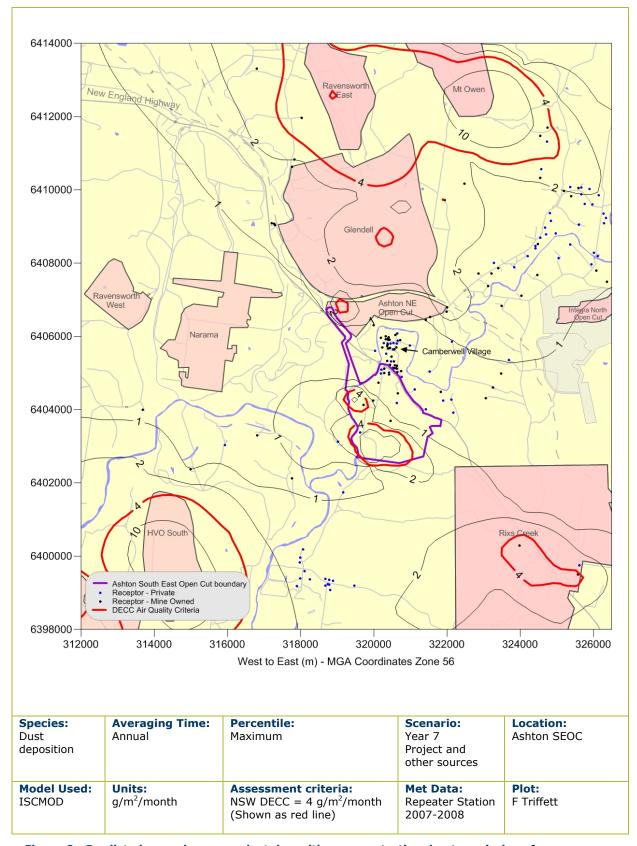


Figure 8.: Predicted annual average dust deposition concentration due to emissions from the Project and other sources in Year 7

8.4 24-hour average PM₁₀ concentrations

Table 8. presents the predicted maximum 24-hour PM_{10} concentrations at the residences. Values that are above the assessment criterion are highlighted **bold red**.

As discussed in **Section 8.2**, recent Conditions of Consent (for example, Integra North Open Cut) have required acquisition of properties if the 24-hour average PM_{10} concentration is exceeded more than five times per year (i.e. the 98.6^{th} percentile), due to emissions from the Project alone.

Table 8. summarises the number of days predicted to exceed the 24-hour average PM_{10} concentration at the *private* residences and highlights in **bold red** those predicted to experience more than five days per above the criteria.

Table 8.. Summary of maximum predicted 24-hour average PM_{10} concentrations ($\mu g/m^3$)

(µg/m²)				
	Year 1	Year 3	Year 5	Year 7
ID		Assessment crit	eria = 50 μg/m³	
		Private Residences		
2	88	73	92	22
8	89	68	91	22
11	70	61	78	20
18	51	54	57	16
23	44	49	63	19
024A	40	47	59	19
024B	47	50	65	18
26	46	48	57	16
30	40	44	51	16
32	37	45	48	15
34	43	48	61	20
35	36	43	55	20
46	139	81	96	23
50	163	76	80	19
51	254	88	88	20
52	41	45	56	18
63	6	12	12	3
64	5	12	12	3
65	5	11	10	3
66	6	13	13	3
067A	5	9	9	3
067B	5	10	10	3
68	5	13	14	4
069Aª	4	8	8	2
70	4	9	9	3
71	4	10	10	3
072B	7	14	14	5
072	6	15	15	5
73	5	13	13	4
74	5	13	14	4
75	5	14	14	4
76	4	11	11	3
77	4	10	10	3
78	4	9	8	3
80°	4	7	7	2
81	21	46	43	9
83	68	123	109	28
084A	53	108	98	22
084B	75	129	101	34
100A ^b	8	16	16	4
100B ^b	7	15	14	4
100C	6	14	14	4
100D	6	13	13	4
101A ^b	7	13	13	4
111 ^b	27	44	41	9
114 ^b	77	84	84	14
117	37	55	56	18
119	183	95	97	23
120	155	142	140	21
121	194	202	162	43

	Year 1	Year 3	Year 5	Year 7
ID	Teal 1	Assessment crit		
129 ^c	24	120	-	-
130A	20	82	171	133
130B	7	14	21	12
131	3	7	9	4
132	3	7	8	4
133 137A	3	7	8	3
137B	4	7	8	3
137C	4	7	9	3
139	3	7	8	3
144	3	7	8	4
145	3	7	8	3
146	3	6	7	3
151	56	51	53	14
162	7	18	18	5
163	6	16	16	4
164 182A	7	14 9	15 10	5 4
182B	3	6	8	2
184A	4	7	8	4
184B	4	6	7	3
184C	4	6	7	3
187	14	44	52	24
197 ^b	3	6	7	2
198 ^b	2	6	6	2
217	9	20	24	10
-		Mine owned residences		22
3	113 86	80 72	98 92	23 22
4	78	69	88	22
5	76	67	88	22
6	87	70	92	22
7	89	69	92	22
10	67	61	81	20
12	78	65	82	21
13	68	62	70	19
17	60	55	71	19
21 22	47 48	51	67	18
25	46	51 48	66 59	19 17
27	45	48	56	16
28	42	47	52	16
29	41	45	51	16
31	40	48	51	15
33	44	49	61	20
36	36	43	54	20
36	34	41	47	17
38	37	42	51	18
39 40	37 35	42 42	49 48	17
40	35	42	48	17 16
43	33	40	47	16
44	31	42	45	17
45	184	85	101	24
47	203	84	88	21
49	120	75	78	20
069B	4	8	8	2
079A	8	16	16	5
079B	4	7	7	2
079C	8	8 15	7	2 4
101B 115	29	37	14 41	22
115	104	83	91	22
122 ^c	532 ^d	166 ^d	- 91	-
123 °	566 ^d	184 ^d	-	-
125 ^c	136 ^d	563 ^d	-	-
127 ^c	283 ^d	614 ^d	-	-
128 ^c	56 ^d	1326 ^d	-	-
153	16	41	40	11
159A	14	28	28	9
159B	12	27	28	9

	Year 1	Year 3	Year 5	Year 7
ID		Assessment crit	eria = 50 μg/m³	
159C	15	32	39	11
159D	18	33	40	11
159E	10	19	18	5
159F	8	15	15	4
159G	8	13	14	4
160A	20	53	52	12
160B	25	51	54	17
160C	29	63	52	21
160D	6	13	13	4
161A	13	28	28	6
161B	11	25	26	6
161C	57	108	96	27
161D	8	21	21	5
166	7	12	13	5
168	10	12	13	4
181A	20	64	69	31
181B	12	23	31	14
181C	10	25	41	22
189	19	26	26	9
190	19	26	26	9
191	19	26	26	9
192	7	10	10	4
193	6	9	9	4
194A	4	7	7	3
194B	4	6	6	2
195	5	11	13	4
196	3	6	7	2
199	2	7	7	2
200	2	6	6	2
218A	10	26	33	13
218B	7	15	19	7
218C	8	21	21	10

Notes:

- These residences have Acquisition Right agreements with Glendell Mine. These residences have Acquisition Right agreements with Mt Owen Mine. This residence would not exist by Year 5 due to mining. b.

Table 8.: Number of days 24-hour average PM₁₀ concentrations are predicted to exceed 50 μg/m³ due to Project alone at private residences only

ID	Owner	Year 1	Year 3	Year 5	Year 7
		N	o. of days a	bove criteri	a
2	Ninness	13	9	8	-
8	Chisholm	13	9	8	-
11	Richards	7	3	7	-
18	Turner	1	1	5	-
23	Lopes	-	-	3	-
024A	Vollebreght & Clarke	-	-	3	-
024B	Vollebreght & Clarke	-	-	3	-
26	Schubert	-	-	2	-
30	Bennett	-	-	1	-
34	Olofsson	-	-	3	-
35	Jong	-	-	2	-
46	Nowland, Moore & Dunn	54	13	10	-
50	Standing	57	9	7	-
51	Bailey	127	19	10	-
52	Foord	-	-	3	-
83	Hall	3	14	9	-
084A	Tisdell	-	8	4	-
084B	Tisdell	2	13	9	-
114 ^b	Richards	4	3	3	-
117	McInerney	-	2	2	-
119	Beasley	130	10	9	-
120	Ernst	29	15	-	-
121	Burgess	49	43	26	-
129 ^c	Bowman & Elder	-	20	NA	NA
130A	Bowman	-	3	27	34
151	Trustees of Church Property-Diocese of Newcastle	2	2	2	-
187	Stapleton	-	-	1	-

Notes:

These residences have Acquisition Right agreements with Glendell Mine.

These residences have Acquisition Right agreements with Mt Owen Mine. This residence would not exist by Year 5 due to mining.

8.5 Summary of impacted residences

Table 8. summarises the private residences where the SEOC is expected to influence air quality and where the impacts are predicted to exceed the relevant project specific criteria, or cumulative criteria. The table should be read in conjunction with **Section 8.2.3** (Interpretation of impacts at sensitive receptors).

Table 8.: Summary of private residences where impacts predicted to exceed assessment criteria

		4550	233ment Criteria		
ID		PM ₁₀ (μg/m³)	TSP (μg/m³)		t deposition m²/month)
	24 hour Project alone ^{a)}	Annual Project & other sources	Annual Project & other sources	Annual Project alone	Annual Project & other sources
	50	30	90	2	4
		Priv	vate Residences		
2	Year 1, Year 3, Year 5	-	-	-	-
8	Year 1, Year 3, Year 5	-	-	-	-
11	Year 1, Year 5	-	-	-	-
23	-	Year 1	-	-	-
024A	-	Year 1	-	-	-
024B	-	Year 1	-	-	-
26	-	Year 1	-	-	-
30	-	Year 1	-	-	-
32	-	Year 1	-	-	-
34	-	Year 1	-	-	-
35	-	Year 1	-	-	Year 1
46	Year 1, Year 3, Year 5	Year 1	-	-	-
50	Year 1, Year 3, Year 5	Year 1	-	-	-
51	Year 1, Year 3, Year 5	Year 1	Year 1	Year 1	-
52	-	Year 1	-	-	-
83	Year 3, Year 5	-	-	-	-
084A	Year 3	-	-	-	-
084B ^c	Year 3, Year 5	-	-	-	-
117	-	Year 1	-	-	-
119	Year 1, Year 3, Year 5	Year 1	-	-	-
120	Year 1, Year 3	Year 1	-	-	-
121	Year 1, Year 3, Year 5	Year 1, Year 3	-	-	-
129	Year 3	Year 3	-	-	-
130A	Year 5, Year 7	Year 5, Year 7	-	-	-
Note:					

Note:

 $^{^{}a.}$ Only includes residences where the predicted concentrations exceed the 24-hour average PM $_{10}$ impact assessment criteria on more than five days.

b. These residences have Acquisition Right agreement with Glendell Mine.

c. These residences have Acquisition Right agreements with Mt Owen Mine.

Table 8. summarises the mine-owned residences where the impacts are predicted to exceed the assessment criteria. This summary shows annual exceedances only.

Table 8.: Summary of mine-owned residences where impacts predicted to exceed assessment criteria

		exceed assessment		
ID	PM10 (µg/m3)	TSP (µg/m3)	Dust deposition (g/m2/month)	
	Annual Project & other sources	Annual Project & other sources	Annual Project alone	Annual Project & other sources
	30	90		
		Mine Owned Resid	dences	
21	Year 1	-	-	-
22	Year 1	-	-	-
25	Year 1	-	-	-
27	Year 1	-	-	-
28	Year 1	-	-	-
29	Year 1	-	-	-
33	Year 1	-	-	-
36	Year 1	-	-	Year 1
36	Year 1	-	-	Year 1
38	Year 1	-	-	-
39	Year 1	-	-	-
40	Year 1	-	-	-
41	Year 1	-	-	-
43	Year 1	-	-	Year 1
44	Year 1	-	-	-
45	Year 1	-	-	-
47	Year 1	-	-	-
49	Year 1	-	-	-
115	Year 1	Year 1	-	Year 1

9 MITIGATION AND MONITORING

9.1 Introduction

The modelling results presented above are based on the assumption that the Proponent applies the control measures discussed in **Section 9.2** to minimise dust emissions. The location of Camberwell Village northeast of the Project Area is in the prevailing downwind direction. Because of this, it will be necessary to ensure that dust emissions are kept to the minimum practicable level and that cumulative impacts with other mining projects are kept to acceptable levels. This section outlines procedures proposed for the management and control of dust emissions, including mine design, real-time monitoring and a real-time management plan.

9.2 Mine design

Extensive iterations of mine design were undertaken to minimise the potential for impact on Camberwell Village. This included the alignment of the proposed open cut pit and specific design of overburden dumps and the embankment faces to reduce the speed of surface winds that would carry dust into the village. Exposed surface areas would be rehabilitated in the shortest possible timeframe to minimise windblown dust emissions.

A covered conveyor would also be installed to transport ROM coal to the CHPP, thus avoiding the need for haulage, and significantly reducing potential dust emission. **Table 9.** lists the best practice control procedures for mine design.

9.3 Proposed dust management and control procedures

The term "best practice" is frequently used in pollution control and pollution management. However, what constitutes "best practice" is difficult to define in practical situations. Environment Australia has published a series of booklets to assist the mining industry with incorporating best practice environmental management through all phases of mineral production from exploration through construction and eventual closure. In the booklet for Dust Control (**Environment Australia, 1998**^a) have defined "best practice" as follows:

"Best Practice can be defined as the most practical and effective methodology that is currently in use or otherwise available. Best practice dust management can be achieved by appropriate planning in the case of new or expanding mining operations, and by identifying and controlling dust sources during the active phases of all mining operations."

The following procedures are proposed for the management of dust emissions from the Project. The aim of these is to minimise the emission of dust in a cost effective manner. The effects of these controls are included in the model simulations. Dust can be generated from two primary sources:

- wind blown dust from exposed areas; and
- dust generated by mining activities.

The proposed controls have been considered against those determined to be best practice in the Environment Australia booklet for Dust Control. **Table 9.** lists the sources of dust as a result of mine design, the proposed controls and identifies those considered to be best practice. **Table 9.** and **Table 9.** lists the different sources of wind-blown and mining-generated dust respectively, the proposed controls, and identifies those considered to be best-practice.

^a Note that this document is currently under review but has not yet been released.

Table 9.: Best Practice Control Procedures for Mine Design

Source	Control Procedures	Applied at Ashton
Transport of coal	Largest practical truck size	Yes
	Shortest route	Yes
	Replace truck haulage with conveyors	Yes
	Enclosed conveyor	Yes
Overburden dumps	Orientation to minimise profile exposure to receptors	Yes
	Profiling of surfaces to reduce surface speed	Yes
	Contouring of dump shape to avoid strong wind flows and smooth gradients to reduce turbulence at surface	Yes
Revegetation	Complete as soon as practical after disturbance	Yes
	Apply as widely as practical	Yes

Table 9.: Best Practice Control Procedures for Wind-blown Dust

_						
Source	Control Procedures	Applied at Ashton				
Areas disturbed by mining	Disturb only the minimum area necessary for mining. Reshape, topsoil and rehabilitate completed overburden emplacement areas as soon as practicable after the completion of overburden tipping.	Yes				
Coal handling areas / stockpiles	Maintain coal handling areas / stockpiles in a moist condition using water carts to minimise wind-blown and traffic-generated dust.	Yes				
ROM Coal Stockpiles	Have available water sprays on ROM coal stockpiles and use sprays to reduce airborne dust, as required.	Yes				

Table 9.: Best Practice Controls for Mine-generated Dust

	. Dest i ractice controls for i-fine gene	
Source	Control procedures	Applied at Ashton
Haul Road Dust	All roads and trafficked areas will be watered as required using water trucks to minimise the generation of dust.	Yes
	All haul roads will have edges clearly defined with marker posts or equivalent to control their locations, especially when crossing large	
	overburden emplacement areas.	
	Obsolete roads will be ripped and revegetated.	
Minor roads	Development of minor roads will be limited and the locations of these will be clearly defined.	Yes
	Minor roads used regularly for access etc will be watered.	
	Obsolete roads will be ripped and revegetated.	
Topsoil Stripping	Access tracks used by topsoil stripping equipment during their loading and unloading cycle will be watered.	Yes
Topsoil Stockpiling	Long term topsoil stockpiles, not used for over 3 months will be re-vegetated.	Yes
Drilling	Dust aprons will be lowered during drilling.	Yes
	Drills will be equipped with dust extraction cyclones, or water injection systems.	
	Water injection or dust suppression sprays will be used when high levels of dust are being generated.	
Blasting	Meteorological conditions will be assessed prior to blasting.	Yes
	Adequate stemming will be used at all times.	
Conveyors	All conveyors will be covered and transfer points enclosed.	Yes
Real-time monitoring	Real-time air quality monitoring will be used in locations predicted likely to experience dust levels above the 24-hour average PM_{10} goal. Remedial action will be taken should the 24-hour concentrations approach the cumulative assessment criteria of 150	Yes
	μg/m³.	<u> </u>

9.4 Monitoring

The locations of the current monitoring stations are shown on **Figure 5.**. It is envisaged that the monitoring program necessary to verify environmental performance will incorporate the following:

- Two meteorological stations in the current locations.
- Four high volume TSP monitors in the current locations, or as otherwise approved by the DECC.
- The current network of twelve deposition gauges, or as otherwise approved by the DECC, to monitor dust fallout.
- Six real-time PM_{10} monitors (TEOMs) at the current locations, or as otherwise approved by the DECC.

10 GREENHOUSE GAS EMISSIONS

10.1 Introduction

In November 2006, the NSW Land and Environment Court handed down a landmark decision (the judgement of Her Honour Pain J in the matter of *Gray v The Minister for Planning and ors NSWLEC 720*) which requires all new industry developments to undertake a global warming impact study in the context of the principles of ecologically sustainable development (ESD).

For the purposes of this report, the ESD principles have been taken to be those defined by the Department of Planning (**DUAP**, **2000**), which are as follows.

- 1. The precautionary principle namely, that if there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation.
- 2. Inter-generational equity namely, that the present generation should ensure that the health, diversity and productivity of the environment is maintained or enhanced for the benefit of future generations.
- 3. Conservation of biological diversity and ecological integrity.
- 4. Improved valuation and pricing of environmental resources.

This section examines the scientific principles that relate greenhouse gases (GHG) to the global warming effect and estimates emissions of GHGs associated with the Project. It is demonstrated that when all categories (that is, Scopes 1, 2 and 3) of GHG emissions from the Project are taken into account, the Project will comply with the principles of ESD.

Scope 1 and Scope 2 are emissions due to the actual operation of the Project and Scope 3 are emissions that would result from the off-site transport and burning of the coal produced by the Project.

10.2 Science of global warming

It is considered that the most authoritative and comprehensive documents dealing with the science of global warming are the technical assessment reports produced approximately every five years by the Intergovernmental Panel on Climate Change (IPCC). To date, the IPCC has published four technical assessment reports, the most recent being in 2007 (IPCC, 2007). These documents are essentially the scientific community's consensus view on climate change. The reports also provide a useful database that is necessary to understand the significance of various human activities in the context of climate change. In summary, the IPCC reports provide well written information critical to understanding the science of global warming. They include quantitative information on the production and fate of greenhouse gases and estimates of the expected increases in global temperatures for a range of scenarios intended to cover a range of possible futures. These scenarios are chosen to illustrate the range of uncertainty in the predictions of temperature increases. The Garnaut Climate Change Review, commissioned by Australia's Commonwealth, State and Territory governments, released a final report in September 2008 which suggests that emissions are tracking at the upper bounds of the scenarios modelled by the IPCC (Garnaut, 2008).

The temperature of the earth's atmosphere is determined almost entirely^a by the balance in radiation received from the sun and that re-radiated to outer space (see for example **IPCC**, **2001**).

The parts of the radiation spectrum through which the earth can re-radiate and lose energy to outer space depends on the composition of the atmosphere. Certain gases including water vapour, carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O) and a range of other gases absorb electromagnetic energy in the infrared spectrum. Solar radiation from the sun contains most of its energy in the infrared, visible and ultraviolet parts of the spectrum.

Sunlight passes through the atmosphere and warms both the atmosphere and the earth's surface. Clouds and the earth's surface directly reflect some of the sun's radiation back to space, but much of the sun's radiation is absorbed by the earth's surface and some by the atmosphere, which are warmed. The warmed earth and its atmosphere then reradiate this energy back to space. For the average global temperature to remain constant, the incoming radiation from the sun must be balanced by the outgoing energy radiated from the earth and atmosphere.

Global warming (and the associated climate change) occurs because of the changing composition of the atmosphere, namely the increasing concentrations of GHGs, in particular CO_2 , CH_4 and N_2O . These gases reduce the parts of the electromagnetic spectrum through which energy can be reradiated from the earth. In response, the earth's temperature must increase to allow the rate of energy loss from the earth to increase and thereby allow the incoming and outgoing radiation to be brought back into balance.

In summary, GHGs absorb electromagnetic energy and change the radiation balance of the earth causing the temperature to increase so that the radiation balance is restored.

Without the presence of any GHGs, the earth's average temperature would be extremely cold (-18 °C) (**Seinfeld and Pandis, 1998**) and most of the planet would be uninhabitable. However, the effect of increasing greenhouse gases is to change existing climates and this will place stresses on current ecological systems that have adapted to current climate regimes.

Increasing concentrations of CO_2 , CH_4 and other GHGs will cause the temperature of the atmosphere to increase but, because the earth transports heat from the equator towards the poles in a complicated way via ocean currents and winds, the precise effect of increasing concentrations is difficult to estimate for any particular location.

The cause of the increasing concentrations of CO_2 and CH_4 is largely attributable to the increase in the worldwide use of fossil fuels to provide energy for increasing populations, which also have increasing per capita consumptions of energy. However, land clearing on a global scale is also an important cause in the change in the concentrations of CO_2 .

10.3 Quantifying greenhouse effects

Scientific publications sometimes refer to the quantity of carbon stored in the atmosphere or may refer to the equivalent quantity of carbon dioxide. In this context, 1.0 tonne (t) of carbon is the same as 3.67 t of CO_2 . Most of the analysis in this report will refer to CO_2 rather than carbon, as this appears to be the most common approach used in Australia.

The estimated quantity of carbon dioxide stored in the atmosphere now is approximately 3,000 Gigatonnes (Gt). The International Energy Agency (**IEA, 2009**) estimates that in 2006, the global

^a The words "almost entirely" are used because the residual heat from the earth's formation and from the decay of radioactive elements in the earth have some effect on the earth's temperature.

emissions of CO_2 from burning fossil fuels were 29,195.4 Mt per year, of which Australia's emissions of CO_2 from burning fossil fuels were 417.06 Mt CO_2 (i.e. 1.4% of the global anthropogenic, or human-related, total).

Because the relationship between global warming and greenhouse gas concentrations is not linear there is no accepted method to determine the contribution that a given emission of greenhouse gases might make to global warming.

To understand this point it is useful to consider the following discussion from Section 1.3.1 of the Second Scientific Assessment Report prepared by the IPCC (**IPCC**, **1996**).

"The amount of carbon dioxide in the atmosphere has increased by more than 25% in the past century and since the beginning of the industrial revolution, an increase which is known to be in large part due to the combustion of fossil fuels and the removal of forests (Chapter 2 [of the report]). In the absence of controls, projections are that the future rate of increase in carbon dioxide amount may accelerate and concentrations could double from pre-industrial values within the next 50 to 100 years (**IPCC, 1994**).

The increased amount of carbon dioxide is leading to climate change and will produce, on average, a global warming of the Earth's surface because of its enhanced greenhouse effect – although the magnitude and significance of the effects are not yet fully resolved. If, for instance, the amount of carbon dioxide in the atmosphere were suddenly doubled, but with other things remaining the same, the outgoing long-wave radiation would be reduced by about 4 Wm⁻². To restore the radiative balance, the atmosphere must warm up and, in the absence of other changes, the warming at the surface and throughout the troposphere would be about 1.2 °C. However, many other factors will change, and various feedbacks come into play (see Section 1.4.1 [of the report]), so the best estimate of the average global warming for doubled carbon dioxide is 2.5 °C (**IPCC, 1990**). Such a change is very large by historical standards and would be associated with major climate changes around the world.

Note if carbon dioxide were removed from the atmosphere altogether, the change in out going radiation would be about 30 Wm⁻² – 7 to 8 times as big as the change for doubling – and the magnitude of the temperature change would be similarly enhanced. The reason is that the carbon dioxide absorption is saturated over part of the spectral region where it absorbs, so the amount of absorption changes at a much smaller rate than the concentration of the gas (Chapter 2 [of the report]). If the concentrations of carbon dioxide are more than doubled, then the relationship between radiative forcing and concentration is such that each further doubling provides a further radiative forcing of about 4 Wm⁻²."

Ashton_SEOC_AQ_FINAL_231009

^a The warming effect of a given quantity of greenhouse gases to the atmosphere is less and less as the concentration become higher and higher.

10.4 Greenhouse gas inventories

Greenhouse gas inventories are calculated according to a number of different methods. The procedures specified under the Kyoto Protocol United Nations Framework Convention on Climate Change are the most common.

The protocol nominates the following GHGs:

- Carbon dioxide (CO₂);
- Methane (CH₄);
- Nitrous oxide (N2O);
- Hydrofluorocarbons (HFCs); and
- Perfluorocarbons (PFCs).

From the point of view of the Project, only CO₂, CH₄ and N₂O are relevant.

 CO_2 and N_2O are formed and released during the combustion of gaseous, liquid and solid fuels. These would be the most significant gases for the Project. They are liberated when fuels are burnt in diesel powered equipment and in the generation of the electrical energy that will be used by the Project.

Inventories of greenhouse gas emissions can be calculated using published emission factors. Different gases have different greenhouse warming effects (referred to as warming potentials) and emission factors take into account the global warming potentials of the gases created during combustion.

The global warming potentials assumed in the Department of Climate Change (**DCC, 2009a**) emission factors are as follows.

- $CO_2 1$.
- CH₄ − 21.
- $N_2O 310$.
- NO₂ not included.

When the global warming potentials are applied to the estimated emissions then the resulting estimate is referred to in terms of CO_2 -equivalent emissions.

10.5 Emission factors

The National Greenhouse Accounts (NGA) Factors published by the Department of Climate Change (**DCC, 2008 and DCC, 2009a**) have been used to convert fuel usage and electricity consumption into CO_2 -equivalent emissions. The relevant emission factors are summarised in **Table 10.**.

Table 10.: Summary of greenhouse gas emission factors

Type of Fuel and Electricity	Emissi	on factor	Scope	Source				
Mining and extraction								
Diesel - on-site transport activities ^(a)	2.7	t CO ₂ -e/kL	1	Table 4 (DCC, 2009a)				
Dieser - on-site transport activities	0.2	t CO ₂ -e/kL	3	Table 38 (DCC, 2009a)				
Explosives use ^(b) ANFO	0.17	t CO ₂ -e/tonne	1	Table 4 (DCC, 2008a)				
Electricity ^(c)	0.89	kg CO₂-e/kWh	2	Table 39				
Electricity	0.18	kg CO₂-e/kWh	3	(DCC, 2009a)				
Extraction of coal	45.0	kg CO2-e/tonne ROM	1	Table 8				
Extraction of coal	45.0 kg CO ₂ -e/tollile KOM		1	(DCC 2009a)				
	Transpo	ort of product coal						
Rail transport	12.3	g CO ₂ -e/t-km	3	QR Network Access (2002)				
Final ail (abin tunnanaut)	73.1	kg CO ₂ -e/GJ	3 ^(d)	Table 4 (DCC, 2009a)				
Fuel oil (ship transport)	5.3	kg CO₂-e/GJ	3	Table 38 (DCC, 2009a)				
Usage of product coal								
Burning coal in a power station	3.00	kg CO ₂ -e/tonne	3	Table 1 (DCC, 2009a)				
Burning coke for steelmaking	90.22	kg CO₂-e/GJ	3	Table 1 (DCC, 2009a)				

Notes:

- (a) The emission factors for diesel usage include Scope 1 emissions which are associated with burning the fuel and Scope 3 emissions which are associated with producing the diesel.
- (b) As the calculation of emissions from explosives use are no longer required under the NGER reporting requirements, the GHG emissions factor for explosives use has been removed from NGA Factors since the version published November 2008. Therefore the factors published in February 2008 (DCC, 2008a) have been used.
- (c) The emission factors for electrical energy include Scope 2 emissions (i.e. those associated with generating the electricity) and Scope 3 emissions (those associated with producing the fuel for the power station and the distribution losses involved in delivering electricity to the mine).
- (d) The emission factor provided is for Scope 1 fuel usage, but as this is being applied to the shipment of coal, it is being used as Scope 3 emission factor.

10.6 Ashton Coal Project greenhouse emissions

10.6.1 Introduction

 CO_2 -equivalent (CO_2 -e) emissions from the Project would result from the following sources:

- 1. The extraction and processing of the open cut coal due to the combustion of diesel fuel (used in diesel-powered equipment, in blasting and to power the diesel generators).
- 2. The transport of the product open cut to The Port of Newcastle and the transport of the product coal overseas.
- 3. The combustion of the open cut coal in steelmaking and power generating facilities.

The following sections present the calculation of CO2-e due to extraction, processing, transport and usage of coal from the SEOC only. Emissions due to the coal from the underground operations are not included.

10.6.2 Emissions from extraction and processing

As discussed in **Section 10.5**, to estimate CO_2 -e emissions from extraction of the coal, the following assumptions have been made.

- Each kWh of electrical energy used results in the release of 1.07 kg of CO₂.
- Each litre of diesel fuel burnt is assumed to result in the release of 2.9 kg of CO₂.
- Each tonne of explosive used is assumed to result in the release of 0.17 t of CO₂.
- Each tonne of open cut ROM coal mined results in the release of 2.17 kg of methane and that methane has a greenhouse warming potential of 21 (This means that each kilogram of methane, because of its lifetime in the atmosphere and its spectral absorption characteristics, is equivalent to 21 kg of CO₂). Therefore, the CO₂-e emissions released for each tonne of ROM coal mined is equal to 45.0 kg (see Table 8, **DCC 2009a**).

Information was provided by ACOL on the usage of electrical energy, usage of explosives and diesel fuel. Electrical energy usage was assumed to be 3.49 kWh/t of ROM processed.

Table 10. summarises the fuel and energy usage for the extraction and processing of the coal,

Table 10. summarises the estimated annual average CO_2 emissions from the Project due to extraction and processing using the emissions factors presented in **Table 10.**.

Table 10.: Fuel, energy and explosives usage from mining processing

Year	Total ROM coal (kt ROM coal/y)	Electrical energy used (processing) (kWh)	Diesel used in extraction total (Litres/y)	ANFO used in blasting (kt/y)
1	2.93	10,218,720	18,160,960	32.397"
2	3.54	12,354,600	18,160,960	32.397"
3	3.10	10,808,530	18,160,960	32.397"
4	3.32	11,600,760	18,183,000	32.397"
5	3.42	11,939,290	18,756,040	32.397"
6	3.17	11,052,830	19,340,100	32.397"
7	1.12	3,919,270	19,373,160	32.397"
Total	20.60	71,894,000	130,135,180	71,225

Table 10.: Summary of estimated CO₂-e emissions from mining and processing of coal from the Project

Year	CO₂-e electrica (proce (kt	l energy ssing)	CO2-e fro (diesel (kt	usage)	CO ₂ -e from blasting (kt/y)	CO ₂ -e from CH ₄ released during mining (kt/y)	Tot (kt/	
	Scope 2	Scope 3	Scope 1	Scope 3	Scope 1	Scope 1	Scope 1 & 2	Scope 3
1	9,095	1,839	49,001	3,715	1,730	131,760	191,585	5,555
2	10,996	2,224	49,001	3,715	1,730	159,300	221,026	5,939
3	9,620	1,946	49,001	3,715	1,730	139,365	199,715	5,661
4	10,325	2,088	49,060	3,720	1,730	149,580	210,695	5,808
5	10,626	2,149	50,606	3,837	1,730	153,945	216,907	5,986
6	9,837	1,990	52,182	3,957	1,730	142,515	206,264	5,946
7	3,488	705	52,271	3,963	1,730	50,535	108,024	4,669
Total	63,986	12,941	351,123	26,623	12,108	927,000	1,354,217	39,564

10.6.3 Emissions from export and burning of the product coal

10.6.3.1Emissions from off-site transport of product coal via rail

For the purpose of this analysis, it has been assumed that all coal for shipment overseas is carried by rail to the Port of Newcastle a distance of approximately 130 km (one way). According to a study commissioned by **QR Network Access (2002)** the Australian average CO₂-e emission rate for rail transport is 12.3 g/net tonne-km for a loaded train. As the destination of the return journey of the train is not known, and in the absence of a specific emission factor for unloaded trains, no allowance has been made for the return trip.

Using this information, **Table 10.** presents a summary of the CO_2 emissions from transporting the product coal from the Project Area to the Port of Newcastle.

Table 10. summarises the estimated CO_2 emissions for each year of operation due to transport of the product via rail.

Table 10.: Estimated CO₂-e emissions from rail transport of product coal (t/y)

Year	Product coal to Total CO ₂ -e Port of Newcastle from rail transp (t/y) (t) Scope 3	
1	1,833,000	2,931
2	2,145,000	3,430
3	1,780,000	2,846
4	1,886,000	3,016
5	1,848,000	2,955
6	1,845,000	2,950
7	719,843	1,151
Total	12,056,843	19,279

10.6.3.2Emissions from shipping of product coal overseas

There will also be emissions associated with the shipping of the product overseas. **Table 10.** presents a summary of coal destination and shipping distances from the Port of Newcastle.

Table 10.: Port of Newcastle coal destinations and distances

Location	Country	% of coal		Distance one-way (km)
Osaka	Japan		59	8065
Kaohsiung	Taiwan		14	7821
Busan	Korea		11	8380
Mazatlan	Mexico		7	12453
Penang	Malaysia		4	8488
Shanghai	China		3	8469
Rotterdam	Netherlands		2	21530

Source: Umwelt (2008)

Emissions were estimated as follows:

- Average ship capacity of 89,000 t (Boyle, 2009)
- Freight shipping energy efficiency is equal to 4.16 tkm/MJ (The Allen Consulting Group, 2001)
- Ships are assumed to burn heavy fuel oil

Estimated GHG emissions from the sea transportation of the coal are provided in **Table 10.**.

Table 10.: Estimated CO₂-e emissions from sea transport of product coal (Mt)

Year	Japan	Taiwan	Korea	Mexico	Malaysia	China	Netherlands	Total CO ₂ -e from sea transport (Mt) Scope 3
1	0.15	0.04	0.03	0.03	0.01	0.01	0.01	0.28
2	0.18	0.04	0.03	0.03	0.01	0.01	0.02	0.33
3	0.15	0.03	0.03	0.03	0.01	0.01	0.01	0.27
4	0.16	0.04	0.03	0.03	0.01	0.01	0.01	0.29
5	0.16	0.04	0.03	0.03	0.01	0.01	0.01	0.28
6	0.16	0.04	0.03	0.03	0.01	0.01	0.01	0.28
7	0.06	0.01	0.01	0.01	0.00	0.00	0.01	0.11
Total	1.01	0.23	0.20	0.19	0.07	0.05	0.09	1.85

10.6.4 Emissions from use of coal

The Proponent's customers will make use of the coal, and there will inevitably be GHG emissions associated with the end use. The emissions from burning the product coal will be much larger than those associated with the extraction and processing of the coal. The adopted convention is that these emissions are attributed to the user of the coal not the producer, however, to address the judgement of her Honour Pain J in the matter of *Gray v The Minister for Planning*, estimates of the GHG emissions associated with the use of the coal have been made.

The convention of not including these emissions avoids double counting of the emissions: leaving the accounting of the emissions from the use of the coal to the end user is also desirable as emissions due to the end use depend on the method by which the coal is used to produce energy and any control measures that might be in place. Various methods of burning will be used by different customers. As most coal from the Project is to be exported, any assessment of greenhouse emissions by its use in those other jurisdictions will be speculative and potentially unreliable. However, based on information provided by the Proponent, it has been assumed that 80% of the coal would be used in steel production and it is assumed that the remainder of the coal is burnt in a power station.

The quantity of CO_2 emitted can be estimated with a reasonable degree of reliability if the carbon content of the coal is known. It is reasonable to assume that all the carbon will be converted to CO_2 and that minor emissions of CO will be converted to CO_2 reasonable rapidly (in 1 to 4 months) (**Seinfeld and Pandis, 1998**). There will, however, be some uncertainty as to the production of N_2O , which depends not only on the nitrogen content in the fuel but the temperature of the combustion process. Some small quantity of carbon will also be retained in the ash from combustion in power stations.

It is assumed that 20% of the coal would be used in a power station and that the power station would have similar emissions to a power station in NSW burning black coal. The emissions can then be estimated using the NGA emission factor of 88.43 kg CO_2 -equivalent/GJ (Table 1, Scope 1 of **DCC, 2009a**).

There is insufficient information available to use the detailed method defined in **DCC**, **2009a** to calculate emissions from usage in steel production, therefore the default emission factor for metallurgical (coking) coal has been used. The NGA emission factor is 90.22 kg CO₂-equivalent/GJ (Table 1, Scope 1 of **DCC**, **2009a**).

Table 10. summarises the estimated CO_2 -e emissions for each year of the Project due to usage of the product.

Table 10.: Estimated CO₂-e emissions from usage of coal (Mt)

		_	_	• •	
Year	Coal used in steel production (t/y)	Coal used in power stations (t/y)	CO₂-e from steel production (t/y) Scope 3	CO ₂ -e from power production (t/y) Scope 3	Total CO₂-e emissions from usage Scope 3
1	1.47	0.37	3.97	0.88	4.84
2	1.72	0.43	4.64	1.02	5.67
3	1.42	0.36	3.85	0.85	4.70
4	1.51	0.38	4.08	0.90	4.98
5	1.48	0.37	4.00	0.88	4.88
6	1.48	0.37	3.99	0.88	4.88
7	0.58	0.14	1.56	0.34	1.90
Total	9.65	2.41	26.11	5.76	31.86

10.6.5 Total CO₂-equivalent emissions

Table 10. summarises the total emissions from all sources.

Table 10.: Summary of total estimated CO₂-e emissions all sources (Mt)

Year	Product coal (Mt)	CO₂-e Mining and extraction (Mt)		CO ₂ -e Transport of product coal (rail & sea) (Mt)	CO ₂ -e Usage of product coal (Mt)	CO ₂ Tot (Mi	al
		Scope 1 & 2	Scope 3	Scope 3	Scope 3	Scope 1 & 2	Scope 3
1	1.83	0.19	0.006	0.28	4.84	0.19	5.13
2	2.15	0.22	0.006	0.33	5.67	0.22	6.01
3	1.78	0.20	0.006	0.28	4.70	0.20	4.99
4	1.89	0.21	0.006	0.29	4.98	0.21	5.28
5	1.85	0.22	0.006	0.29	4.88	0.22	5.18
6	1.85	0.21	0.006	0.29	4.88	0.21	5.17
7	0.72	0.11	0.005	0.11	1.90	0.11	2.02
Total	12.06	1.35	0.04	1.87	31.86	1.35	33.77
TOTAL (Scope 1, 2 & 3) (Mt)						35.13	
					Annual av	erage (Mt/y)	5.02

10.6.6 Important additional considerations

While it is possible to assess the significance of these emissions by comparing them with other sources of greenhouse gases, it is also important to note that the efficiency with which the coal is used is also very important. All other things being equal^a, global CO₂-equivalent emissions could be halved if power station efficiencies were doubled, or halved if the efficiency by which end users' consumed electricity was doubled or waste was reduced and so on.

Different customers will use the coal in power plants of different thermal efficiencies. The Australian Coal Association provides some typical statistics for power station efficiencies on their web site (**ACA**, **2006**).

The web site notes the following:

 $^{^{\}mathrm{a}}$ Population remaining fixed and the per capita consumption of energy being fixed.

"Industry has continuously striven to increase efficiencies of conventional plant; for example, the average thermal efficiency of US power stations has increased from 5% in 1900, to around 35% currently. In China, most power plants are relatively small, average efficiency is about 28% compared to an OECD average of 38%. New conventional [pulverised fuel] PF power plants achieve above 40% efficiency.

Advanced modern plants use specially developed high strength alloy steels, which enable the use of supercritical and ultra-supercritical steam (pressures >248 bar and temperatures >566°C) and can achieve, depending on location, close to 45% efficiency.

Application of new advanced materials to PF power plant should enable efficiencies of 55% to be achieved in the future. This results in corresponding reductions in CO_2 emissions as less fuel is used per unit of electricity generated".

The Proponent does not propose, nor does its application for approval, seek approval to burn any of the coal produced.

10.6.7 Contribution to global warming and conclusions

Finally, it is useful to consider the contribution that might be made to global warning from:

- emissions from mining;
- emissions from burning Project-related product coal; and
- the combined emissions from both mining and burning Project-related product coal.

The annual average Scope 1 and Scope 2 emissions from the Project are 0.19 Mt per year. When compared with 2007 Scope 1 and Scope 2 emissions in Australia and NSW, this represents approximately:

- 0.3% of the annual greenhouse emissions of 69.5 Mt from mining in Australia (DCC, 2009b);
- 0.9% of the annual greenhouse emissions of 21.6 Mt from mining in NSW (DCC, 2009b);
- 0.03% of the total annual greenhouse emissions of 597.2 Mt in Australia (DCC, 2009c); and
- 0.12% of the total annual greenhouse emissions of 162.7 Mt in NSW (DCC, 2009c).

Because the relationship between global warming and greenhouse gas concentrations is not linear there is no accepted method to determine the contribution that a given emission of greenhouse gases might make to global warming.

To understand this point, it is useful to consider the discussion from Section 1.3.1 of the Second Scientific Assessment Report prepared by the IPCC (**IPCC**, **1996**), which was provided earlier in **Section 10.3**.

At any point in time, it would be reasonable simply to compare the estimated emission of CO_2 -equivalent from the various activities with the estimated equivalent global emission from fuel burning of 29,195.42 Mtpa (**IEA, 2009**). On this basis, average annual emissions over the lifetime of the Project from the mining and burning of coal (including transportation) are estimated to be 0.02% of global CO_2 -equivalent annual emissions from fuel burning. Thus, the Project could be considered to contribute 0.02% to the increase in global temperatures caused by the increase

^a The warming effect of a given quantity of greenhouse gases to the atmosphere is less and less as the concentration become higher and higher (see **Section 10.3**).

in greenhouse gas emissions as they are currently. This invites the question as to what temperature rise might be attributed to the GHG emissions from the Project.

Based on the IPPC estimate that a doubling of the CO_2 -equivalent concentration in the atmosphere would lead to a 2.5°C increase in global average temperature (see **Section 10.3**), and that the current global CO_2 load is approximately 3,000 Gt, we can estimate that the annual average emissions during the life of the Project (including mining, transporting the coal to the Port of Newcastle and overseas, and usage of the coal) would lead to an increase in global temperature of 0.000004 °C [(5.02 \times 10⁶/3,000 \times 10⁹) \times 2.5°C].

There will clearly be no measurable environmental effect due to the emissions of GHGs from the Project, even when the customer's use of the coal is taken into account. Any environmental assessment would conclude that the effects of the emissions from the Project are unable to be measured. Given this, it is clear that the Project would comply with the principles of ESD.

In practice, of course, the effects of global warming and associated climate change are the cumulative effect of many thousands of such sources and it is the cumulative effects that pose a threat to ESD principles.

This analysis highlights the problem of dealing with climate change on a mine-by-mine, or project-by-project basis. Indeed, if this approach is adopted, it is likely to be ineffective since the coal will simply be sourced from some other place.

Ultimately, the control of greenhouse gas emissions is likely to occur via economic instruments such as the Carbon Pollution Reduction Scheme, as outlined in the Australian Government green paper released in July 2008 (**DCC**, **2008b**), and subsequent white Paper released in December 2008 (**DCC**, **2008c**), which detail the design of a national emissions trading scheme.

The scheme will require businesses and industry to buy a 'pollution permit' for each tonne of carbon they contribute to the atmosphere, giving them a strong incentive to reduce pollution, encourage the development of carbon capture and sequestration, encourage the development of renewable forms of energy generation and improve the efficiency with which electricity is used. At the time of writing the emissions trading scheme had been delayed to July 2011, and the legislation has yet to be passed through Parliament.

11 CONCLUSIONS

This report has developed dust emissions inventories for the proposed SEOC Project operations at four stages of operation. These stages have been selected to represent the potential air quality impacts that the Project would have in the area over the lifetime of the Project.

The emissions inventories developed for each of the stages have been used with local meteorological data and the US EPA's ISCST3 model (adapted to ISCMOD) to predict the maximum 24-hour PM_{10} , annual average PM_{10} , annual average TSP and annual average dust deposition (insoluble solids) over an area spanning approximately 17 km (east-west) and 18 km (north-south). Open-cut mining as well as underground operations activity was included in the modelling. The modelling shows both the effect of the Project only and the cumulative effects of the Project with neighbouring mines and other sources of dust.

Incremental 24-hour average PM_{10} impacts were assessed and it was found that fifteen private residences (Residences 2, 8, 11, 46, 50, 51, 83, 084A, 084B, 119, 120, 121, 126, 129 and 130A) would experience dust levels exceeding the 24-hour average PM $_{10}$ assessment criterion (at the

 98.6^{th} percentile, that is more than five days per year) of $50~\mu g/m^3$ due to the Ashton SEOC project alone. Note that residence 126 is in an area that would be part of the active mine, and hence will not actually exist in any modelled years due to mining. Similarly, residence 129 will not exist in years 5 and 7 due to mining.

Cumulative annual average PM_{10} impacts were assessed and it was found that across the modelling domain, twenty-nine private residences (Residences 23, 024A, 024B, 26, 30, 32, 34, 35, 46, 50, 51, 52, 63, 81, 100A, 100B, 100C, 101A, 117, 119, 120, 121, 126, 129, 130A, 162, 164, 198 and 217) would experience dust levels exceeding the annual average PM_{10} assessment criterion of 30 μ g/m³ for the Project and other sources. Note that residence 126 is in an area that would be part of the active mine, and hence will not actually exist in any modelled years due to mining. Similarly, residence 129 will not exist in years 5 and 7 due to mining. Residences 126 and 129 aside, there are seventeen residences where the project could materially affect the predicted levels (residences 23, 024A, 024B, 26, 30, 32, 34, 35, 46, 50, 51, 52, 117, 119, 120, 121 and 130A.

Cumulative TSP impacts were assessed and it was found that three private residences (51, 126 and 129) would experience dust levels exceeding the TSP assessment criterion of 90 μ g/m³ for the Project and other sources. Note that residence 126 is in an area that would be part of the active mine, and hence will not actually exist in any modelled years due to mining. Similarly, residence 129 will not exist in years 5 and 7 due to mining. Residences 126 and 129 aside, the project could materially affect the predicted levels at residence 51.

Incremental Deposited Dust impacts were assessed and it was found that three private residences (Residences 51, 126 and 129) would experience dust levels exceeding the annual average 2 g/m²/month (insoluble solids) deposition level assessment criteria from the Project alone. Note that residence 126 is in an area that would be part of the active mine, and hence will not actually exist in any modelled years due to mining. Similarly, residence 129 will not exist in years 5 and 7 due to mining. Residences 126 and 129 aside, the project could materially affect the predicted levels at residence 51.

Cumulative Deposited Dust impacts were assessed and it was found that five private residences (Residences 35, 51, 126, 129 and 198) would experience dust levels exceeding the annual average 4 g/m²/month (insoluble solids) deposition level assessment criteria for dust from the Project and other sources. Note that residence 126 is in an area that would be part of the active mine, and hence will not actually exist in any modelled years due to mining. Similarly, residence 129 will not exist in years 5 and 7 due to mining. Residences 126 and 129 aside, the project would not materially affect the predicted levels at any residence.

The CO_2 emissions released during the mining operations are small compared to the CO_2 emissions released during the combustion of the coal proposed for extraction. ACOL is committed to reviewing and monitoring GHG emissions and the activities that lead to GHG emissions, to ensure that these emissions are kept to the minimum practicable level and will attempt to keep the ratio of greenhouse gas emissions per tonne of coal produced as low as possible.

12 REFERENCES

ACA (2006)

http://www.australiancoal.com.au/cleantech.htm

Arya S P (1999)

"Air Pollution Meteorology and Dispersion" Published by Oxford University Press (Page 202 and 208).

Bureau of Meteorology (2008)

www.bom.gov.au

Boyle (2009)

http://www.railexpress.com.au/archive/2009/march-04-09/other-top-stories/capacity-balancing-act-newcastle-export-coal-chain

DCC (2008a)

"National Greenhouse Accounts (NGA) Factors" January 2008 (minor edits, February 2008). Published by the Department of Climate Change. http://www.greenhouse.gov.au/workbook/

DCC (2008b)

"Carbon Pollution Reduction Scheme. Green Paper" July 2008. Published by the Department of Climate Change. www.climatechange.gov.au ISBN 978-1-921298-25-7

DCC (2008c)

"Carbon Pollution Reduction Scheme. White Paper" December 2008. Published by the Department of Climate Change. www.climatechange.gov.au ISBN 978-1-921298-30-1

DCC (2009a)

"National Greenhouse Accounts (NGA) Factors" June 2009. Published by the Department of Climate Change. http://www.greenhouse.gov.au/workbook/

DCC (2009b)

"Australian National Greenhouse Accounts: National Inventory by Economic Sector 2007" May 2009. Published by the Department of Climate Change. http://www.climatechange.gov.au

DCC (2009c)

"Australian National Greenhouse Accounts: State and Territory Greenhouse Gas Inventories 2007" May 2009. Published by the Department of Climate Change. http://www.climatechange.gov.au

DUAP (2000)

"Coal mines and associated infrastructure – EIS guideline" Department of Urban Affairs and Planning (now Department of Planning), 23-33 Bridge Street (GPO Box 39) Sydney, NSW 2001

Environment Australia (1998)

"Best Practice Environmental Management in Mining: Dust Control" Environment Australia, Department of the Environment, 1998. ISBN 0 642 54570 7

Environmental Resources Management (1997)

Ravensworth West Environmental Assessment

Garnaut (2008)

"The Garnaut Climate Change Review. Final Report", Ross Garnaut www.qarnautreview.orq.au

Hanna S.R., Briggs G.A., Deardorff J.C., Egan B.A., Gifford F.A. and Pasquill F (1977)

"AMS Workshop on Stability Classification Schemes and Sigma Curves – Summary of Recommendations" concerning the adjustment of sigma-curves" Bulletin American Meteorological Society, Volume 58, Number 12, 1305-1309.

Holmes Air Sciences (1994)

"Proposed Rixs Creek Open Cut Mine, Near Singleton, NSW", Prepared for Envirosciences Pty Ltd, November 1994.

Holmes Air Sciences (2003)

"Air Quality Assessment: Mount Owen Operations" Prepared for Umwelt (Australia) Pty Ltd by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. December 2003.

Holmes Air Sciences (2005)

"Air Quality Impact Assessment Carrington Pit" Prepared for ERM by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. October 2005.

Holmes Air Sciences (2006)

"Air Quality Assessment: Liddell Open Cut – Proposed Modifications" Prepared for Umwelt (Australia) Pty Ltd by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. December 2006.

Holmes Air Sciences (2007a)

"Air Quality Assessment: Proposed Glendell Mine – Modification to Development Consent" Prepared for Umwelt (Australia) Pty Ltd by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. August 2007.

Holmes Air Sciences (2007b)

"Air Quality Assessment: Hunter Valley Operations South Coal Project" Prepared for ERM by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. June 2007.

Holmes N E, Lakmaker S and Charnock N (2007)

"The performance of dispersion models in predicting maximum 24-hour PM_{10} concentrations from open cut coal mines" Conference Proceedings of the 18^{th} CASANZ Conference, 9-13 September 2007, Brisbane

IEA (2009)

http://www.eia.doe.gov/iea/carbon.html "Table H1 World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil Fuels (Million Metric Tons of Carbon Dioxide), 1980-2006" Accessed 14 July 2009.

IPCC (1990)

"Climate Change 1990 – The Science of Climate Change: - The IPCC Scientific Assessment" Edited by Houghton, J T, Jenkins J J, Ephraums J J, Cambridge University Press, UK 365 pp.

IPCC (1994)

"Climate Change 1994 – Radiative Forcing of Climate Change and an Evaluation of IPCC IS92 Emissions Scenarios" Edited by Houghton, J T, Meira Filho L G, Bruce J, Lee, H, Callender B A, Haites E, \ Harris N and Maskell K, Cambridge University Press, UK 339 pp.

IPCC (1996)

"Climate Change 1995 – The Science of Climate Change – Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change" Edited by Lakeman J A, Published by Cambridge University Press, ISB 0 521 56436 0.

IPCC (2001)

"Climate Change 2001: The Scientific Basis". Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Nouger, P.J. van der Linden, X.

IPCC (2007)

"Climate Change 2007: Synthesis Report". An Assessment of the Intergovernmental Panel on Climate Change.

NEPC (1998)

"National Environmental Protection Measure and Impact Statement for Ambient Air Quality". National Environment Protection Council Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.

NEPC (2003)

"Variation to the National Environment Protection (Ambient Quality) Measure for Particles as $PM_{2.5}$ ", May 2003.

NSW DEC (2005)

"Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW", August 2005.

NSW DECC (2007)

"Air Emissions Inventory for the Greater Metropolitan Region in New South Wales: Commercial Emissions Module" Prepared jointly by DECC NSW and Pacific Air & Environment. ISBN 978 1 74122 376 7. Available from www.environment.nsw.gov.au

Powell (1976)

"A Formulation of Time-varying Depths of Daytime Mixed Layer and Nighttime Stable Layer for use in Air Pollution Assessment Models", Annual Report for 1976 Part 3, Battelle PNL Atmospheric Sciences, 185-189.

QR Network Access (2002)

"Comparison of Greenhouse Gas Emissions by Australian Intermodal Rail and Road Transport" QR Network Access, 127 Creek Street, Brisbane, Queensland 4000.

Seinfeld J H and Pandis S N (1998)

"Atmospheric Chemistry and Physics" Published by John Wiley & Sons Inc.

SPCC (1983)

"Air Pollution from Coal Mining and Related Developments", Published by NSW State P ollution Control Commission (now NSW DECC).

SPCC (1986)

"Particle size distributions in dust from open cut coal mines in the Hunter Valley", Report Number 10636-002-71, Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames & Moore, 41 McLaren Street, North Sydney, NSW 2060.

The Allen Consulting Group (2001)

"Greenhouse Emissions Trading. Implications and Opportunities for the Australian Transport Sector" Report to the National Transport Secretariat.

Umwelt (2008)

"Mt Arthur /underground Project Environmental Assessment – Appendix 13 Greenhouse Gas Assessment" Prepared by SEE Sustainability Consulting July 2007 http://projects.umwelt.com.au/mtarthur-underground/

URS (2000)

"Mount Arthur North Coal Project" EIS produced for COAL Australia Pty Ltd by URS Australia Pty Ltd, Level 22, and 127 Creek Street, Brisbane, Queensland 4000.

URS (2009)

"Integra Open Cut Project Environmental Assessment: Appendix G" June 2009. http://www.integracoal.com.au/index.php?option=com_content&task=view&id=31&Itemid=45

US EPA (1985)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

US EPA (1995a)

"User's Guide for the Industrial Source Complex (ISC3) Dispersion Models - Volume 1 User's Instructions" US Environmental Protection Agency, Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division, Research Triangle Park, North Carolina 27711.

Appendix : Residence ownership details

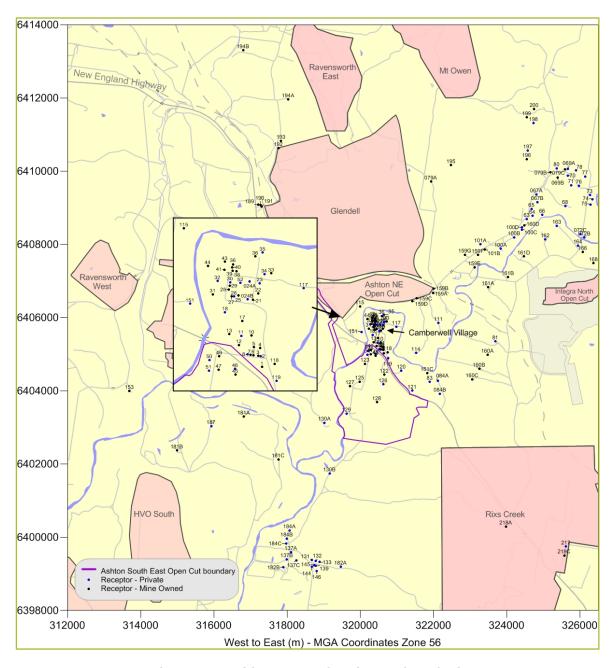


Figure A.: Sensitive receptor locations and numbering

Easting (m)	Northing (m)	ID	Owner
(111)	()		Private Residences
320628.469	6405120	2	Ronald Wayne Ninness
320519.781	6405136.5	8	Michael James Chisholm
320466.281	6405310.5	11	Bruce Howard Richards, Rosalie Ellen Richards
320332.594	6405528	18	Sandra Phyllis Turner
320622.906	6405796.5	23	Valda Kim Lopes
320536.812	6405813.5	024A	John Leonardus Vollebreght & Tracey Lee Clarke
320519.406	6405646.5	024B	John Leonardus Vollebreght & Tracey Lee Clarke
320407.531	6405672.5	26	Corey Ian Schubert & Rosemary Anne Schubert
320373.906	6405806.5	30	Alan John Bennett
320269.344	6405816.5	32	Colin Leslie Stapleton
320659.719	6405879	34	Torbjorn Anders Olofsson & Diedre Ella Olofsson
320645.25	6406081	35	Meindert De Jong & Thelma Eileen De Jong
320417	6405004.5	46	Alfred Nowland, Edgar Moore, John Thomas Dunn
320202.188	6405087	50	Clinton Standing
320195.938	6404988.5	51	Robert John Bailey & Cindy Narelle Bailey
320460.906	6405797.5	52	Leslie Alan Foord & Susan Dorothy Foord
324549.125	6408691.5	63	Mark James Smith & Georgina Mary Smith
324702.594	6408777.5	64	Stephen James McInerney
324678	6408969	65	Graham Stanley Watson & Marilyn Jan Watson
324970.594	6408808.5	66	Errol Thomas Foster & Dianne Gayle Foster
324814.281	6409364	067A	Paula Joy Hedges
324841.562	6409154	067B	Paula Joy Hedges
325600.094	6409047.5	68	David Martin Moran
325671.031	6410067.5	069A	Private Freehold - White
325665.312	6409874	70	Bevan George Wilson & Dianne Jennifer Wilson
325759.906	6409620	71	Gillian Louise Holmes
326122.531	6408189	072B	Graeme William Cheetham & Kay Heather Cheetham
326015.5	6408284	072C	Graeme William Cheetham & Kay Heather Cheetham
326269.594	6409346	73	Bruce Moran & Janet Mary Moran
326337.031	6409236	74	M&S Boyce
326288.5	6409092	75	D&M Bridge
325974.469	6409606.5	76	K&J Badior
326144.531	6409852	77	David Neville Bynon & Lynne Agatha Bynon
325887	6410028	78	Vicki Margaret Conroy
325365.094	6410080.5	80	Martin Henry Westcott & Judy Anne Westcott
323690.594	6405348.5	81	Rodney George Hall & Doreen Ann Hall
321897.969	6404244	83	Gregory James Hall

Easting	Northing	ID		Owner
(m) 322118.531	(m) 6404277.5	084A	Isobel Mary Tisdell	
322178	6403920	084B	Isobel Mary Tisdell	
323836.844	6407879	100A	Alan Charles Noble	
324203.656	6408195	100B	Alan Charles Noble	
324416.344	6408394	100C	Alan Charles Noble	
324421	6408470	100D	Alan Charles Noble	
323284.469	6408000	101A	Gregory James Donnellan	
322138	6405854	111	Bruce Howard Richards & Rosalie Ellen Richards	
321519.812	6405033	114	Bruce Howard Richards & Rosalie Ellen Richards	
320987.812	6405749	117	John Charles McInerney & Judith McInerney	
320760.812	6404893.5	119	Mark Andrew Beasley & Michele Kathleen Beasley	
321122.344	6404551.5	120	Stephen Francis Ernst & Carol Dawn Ernst	
321417.188	6404001	121	Trevor Geoffrey Burgess	
320624.188	6404173	126	Neville Gordon Smiles & Margaret Fay Smiles	
319622.719	6403376	129	W.H. Bowman, M. H. Bowman, W.G. Bowman & G. R. Elder	
319022.625	6403128.5	130A	Alistair Stuart Bowman	
319158.906	6401742	130B	Alistair Stuart Bowman	
318672.188	6399372	131	Malcolm James Ryan & Elaine Tze Mei Ryan	
318783.906	6399350	132	Paul Raymond Burley & Catherine Maree Burley	
318889.25	6399321	133	Tony Zanardi & Sandra Maree Zanardi	
318104.75	6399595.5	137A	Wyoming Holsteins PTY Limited	
317991.438	6399396	137B	Wyoming Holsteins PTY Limited	
318253.188	6399367.5	137C	Wyoming Holsteins PTY Limited	
318779.906	6399215.5	139	Robert John Algie	
318676.156	6399197.5	144	Chriss Ivan Maskey	
318741.594	6399235.5	145	HJ Kauter, WH Bowman & H Wright	
318807.062	6399079.5	146	Todd Anthony Mills & Sharron Ann Mills	
320040	6405606	151	Trustees of Church Property-Diocese of Newcastle	
325054.719	6408134	162	William Edwin Gardner & Anne Mary Gardner	
325370.969	6408509	163	John Henry Morre & Margaret Rose Moore	
325944.938	6407969.5	164	Brian William Cherry & Roselea Ann Cherry	
319460.656	6399193.5	182A	Elizabeth Stuart Bowman	
317897.25	6399180.5	182B	Elizabeth Stuart Bowman	
318067.094	6400189	184A	Bruce Eric Moxey & Thea Anne Moxey	
317991.594	6399965	184B	Bruce Eric Moxey & Thea Anne Moxey	
317973.188	6399822	184C	Bruce Eric Moxey & Thea Anne Moxey	
315923.906	6403033.5	187	Neville Robert Stapleton	
324578	6410566	197	Fairfull J & LS	
324736	6411314	198	Deaves IP & SJ	
325617.906	6399742.5	217	M Eveleigh, K Penfold & R Eveleigh	

Easting (m)	Northing (m)	ID	Owner
()	()		Aine Owned Residences
320642.062	6405021.5	1	Ashton Coal Mines Limited
320608.125	6405123.5	3	Ashton Coal Mines Limited
320625.094	6405196	4	Ashton Coal Mines Limited
320572.812	6405205	5	Ashton Coal Mines Limited
320567.406	6405130	6	Ashton Coal Mines Limited
320543.875	6405133.5	7	Ashton Coal Mines Limited
320552.062	6405312	10	Ashton Coal Mines Limited
320448.312	6405225	12	Ashton Coal Mines Limited
320367.719	6405326.5	13	Ashton Coal Mines Limited
320476.656	6405447.5	17	Ashton Coal Mines Limited
320563.375	6405642.5	21	Ashton Coal Mines Limited
320610.125	6405702	22	Ashton Coal Mines Pty Limited
320442.938	6405684.5	25	Ashton Coal Mines Limited
320386.656	6405673	27	Ashton Coal Mines Limited
320361.938	6405737.5	28	Ashton Coal Mines Limited
320370.719	6405773	29	Ashton Coal Mines Limited
320230.25	6405694.5	31	Ashton Coal Mines Limited
320717.812	6405887.5	33	Ashton Coal Mines Limited
320584.594	6406043.5	36	Ashton Coal Mines Limited
320398	6405970	36	Ashton Coal Mines Limited
320428.094	6405907.5	38	Ashton Coal Mines Limited
320394.25	6405911	39	Ashton Coal Mines Limited
320392.062	6405944.5	40	Ashton Coal Mines Limited
320325.875	6405919	41	Ashton Coal Mines Limited
320330.156	6405994.5	43	Ashton Coal Mines Limited
320187.938	6405956.5	44	Ashton Coal Mines Limited
320418.094	6404951	45	Ashton Coal Mines Limited
320280.031	6404996.5	47	Ashton Coal Mines Limited
320284.375	6405120	49	Ashton Coal Mines Limited
325389.625	6409818.5	069B	Xstrata Mt Owen PTY Limited
321928	6409716	079A	Hunter Valley Coal Corporation PTY Limited
325187.344	6409968	079B	Hunter Valley Coal Corp. Pty Ltd
325594.219	6410045	079C	Hunter Valley Coal Corp. Pty Ltd
323404.844	6407862.5	101B	Mine Owned - Xstrata or Subsidiary
319988.875	6406304.5	115	Ashton Coal Mines Limited
320745	6405051	118	Ashton Coal Mines Limited
320655.688	6404437	122	Ashton Coal Mines Limited

Easting (m)	Northing (m)	ID	Owner
320130.906	6404739	123	Ashton Coal Mines Limited
319986.094	6404251.5	125	Ashton Coal Mines Limited
319720.125	6404124	127	Ashton Coal Mines Limited
320450.375	6403685	128	Ashton Coal Mines Limited
313691.688	6403991.5	153	Mine Owned - Xstrata or Subsidiary
321981.156	6406667.5	159A	Glendell Tenements PTY Limited
322002.688	6406793	159B	Mine Owned - Xstrata or Subsidiary
321537.469	6406522.5	159C	Glendell Tenements PTY Limited
321424.5	6406444.5	159D	Glendell Tenements PTY Limited
323124.156	6407374.5	159E	Mine Owned - Xstrata or Subsidiary
323212.188	6407709.5	159F	Mine Owned - Xstrata or Subsidiary
322859.75	6407718.5	159G	Mine Owned - Xstrata or Subsidiary
323477.219	6404984	160A	RHA Pastoral Company PTY Limited
323247.188	6404600	160B	RHA Pastoral Company PTY Limited
323057.656	6404313.5	160C	RHA Pastoral Company PTY Limited
324484.875	6408518.5	160D	RHA Pastoral Company PTY Limited
323491.625	6406830	161A	Vale Australia (GC), Maitland Main Colleries P/L, NS Glennies Creek P/L, POS-GC P/L, JS Glennies Creek P/L & JFE Steel Aus. P/L
324031.312	6407105	161B	CVRD AUSTRALIA (GC) P/L & MAITLAND MAIN COLLIERIES P/L & NS GLENNIES CREEK P/L & POS-GC P/L & JS GLENNIES CREEK P/L & JFE GLENNIES CREEK P/L & JFE STE
321824.812	6404485.5	161C	Vale Australia (GC), Maitland Main Colleries P/L, NS Glennies Creek P/L, POS-GC P/L, JS Glennies Creek P/L & JFE Steel Aus. P/L
324467	6407668	161D	Vale Australia (GC), Maitland Main Colleries P/L, NS Glennies Creek P/L, POS-GC P/L, JS Glennies Creek P/L & JFE Steel Aus. P/L
326078.688	6407793	166	Integra Coal Operations Pty Ltd
326370.688	6407486	168	Integra Coal Operations Pty Ltd
316816	6403293	181A	Coal & Allied Operations Pty Limited
314988.094	6402368.5	181B	Coal & Allied Operations Pty Limited
317758.281	6402122.5	181C	Coal & Allied Operations Pty Limited
317206	6409079	189	Mine Owned - Xstrata or Subsidiary
317274.188	6409071	190	Mine Owned - Xstrata or Subsidiary
317305	6409034.5	191	Mine Owned - Xstrata or Subsidiary
317763	6410629	192	Mine Owned - Xstrata or Subsidiary
317836	6410828	193	Mine Owned - Xstrata or Subsidiary
318030	6411960	194A	LIDDELL TENEMENTS PTY LIMITED
316796	6413303	194B	LIDDELL TENEMENTS PTY LIMITED
322480.312	6410161	195	Enex Ravensworth PTY Limited
324545	6410331	196	Mine Owned - Xstrata or Subsidiary
324547	6411471	199	Mine Owned - Xstrata or Subsidiary
324751	6411695	200	Mine Owned - Xstrata or Subsidiary
323977.406	6400291	218A	Rix's Creek Pty Limited
325665.406	6398722.5	218B	Rix's Creek Pty Limited
325571.5	6399501.5	218C	Rix's Creek Pty Limited

 $\label{eq:Appendix:Predicted PM} \textbf{Appendix:Predicted PM}_{2.5} \, \textbf{emissions from mining sources}$

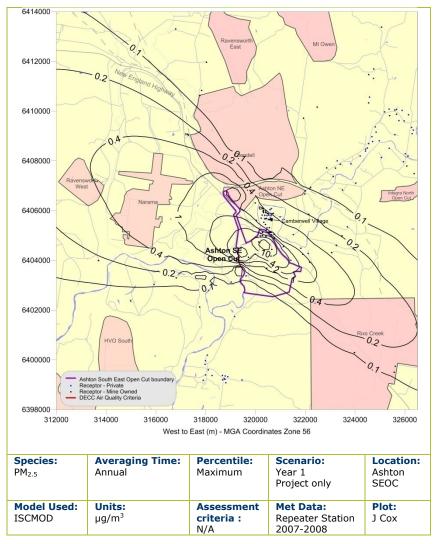


Figure B.: Predicted annual average PM_{2.5} concentration due to emissions from the Proposal – Year 1

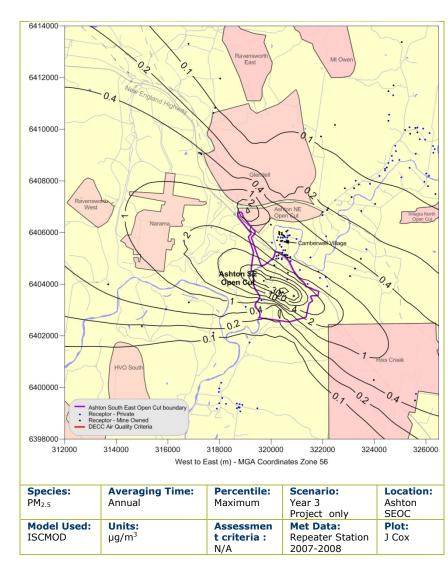


Figure B.: Predicted annual average $PM_{2.5}$ concentration due to emissions from the Proposal – Year 3

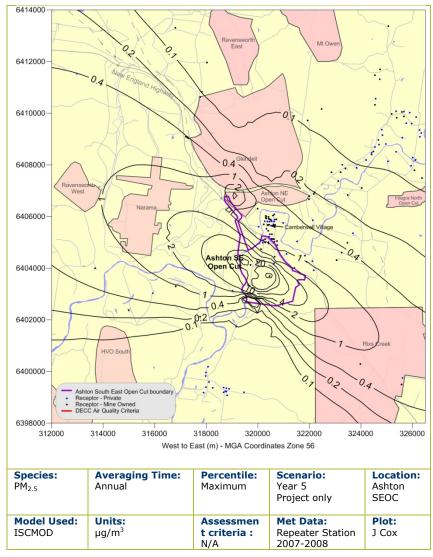


Figure B.: Predicted annual average PM_{2.5} concentration due to emissions from the Proposal – Year 5

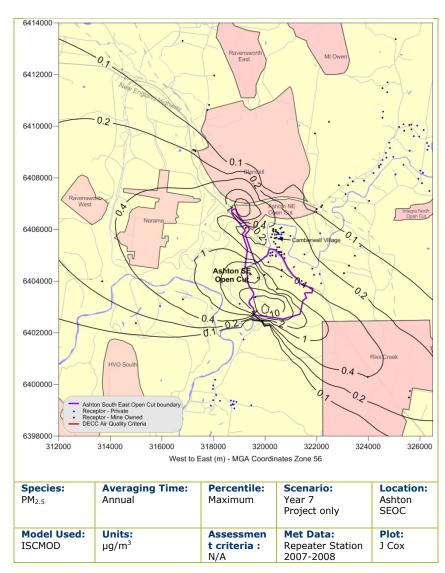


Figure B.: Predicted annual average $PM_{2.5}$ concentration due to emissions from the Proposal- Year 7

Appendix: Joint wind speed, wind direction and stability class tables for Ashton Coal meteorological station

STATISTICS FOR FILE: C:\Jobs\Ashton2008\Met\Ashton_Repeater_Met\Ashton_Repeater_Jul07-

Jun08.isc
MONTHS: All
HOURS: All
OPTION: Frequency

PASQUILL STABILITY CLASS 'A'

Wind Speed Class (m/s)

	0.50	1.50	3.00	4.50	6.00	7.50	9.00	GREATER	
WIND	TO	THAN							
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NNE	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
NE	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
ENE	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
E	0.000342	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000456
ESE	0.000569	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000911
SE	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000342
SSE	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
S	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
SSW	0.000456	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000569
SW	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000456
WSW	0.001025	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001139
W	0.000114	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000342
WNW	0.000456	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000569
NW	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
NNW	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
N	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
CALM									0.000569
TOTAL	0.004214	0.001025	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005808

MEAN WIND SPEED (m/s) = 1.15 NUMBER OF OBSERVATIONS = 51

PASQUILL STABILITY CLASS 'B'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50		6.00 TO 7.50	7.50 TO 9.00		GREATER THAN 10.50	TOTAL
NNE NE		0.000000				0.000000			0.000000
ENE	0.000114	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000228
E	0.000569	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001025
ESE	0.001253	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001480
SE	0.000114	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000228
SSE	0.000683	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000797
S	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000456
SSW	0.000569	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000569
SW	0.000114	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000342
WSW	0.000456	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000797
W	0.001139	0.000797	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.002278
WNW	0.000797	0.001480	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.002619
NW	0.000114	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000342
NNW	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
N	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
CALM									0.000911
ΤΩΤΔΤ.	0 006377	0 004100	0 000683	0 000000	0 000000	0 000000	0 000000	0 000000	0 012072

MEAN WIND SPEED (m/s) = 1.50 NUMBER OF OBSERVATIONS = 106

PASQUILL STABILITY CLASS 'C'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50		3.00 TO 4.50	TO		7.50 TO 9.00	TO	THAN	TOTAL
NNE	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
NE	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
ENE	0.000911	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001025
E	0.000683	0.001708	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.002733
ESE	0.002961	0.002392	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005352
SE	0.001253	0.002164	0.001480	0.000456	0.000000	0.000000	0.000000	0.000000	0.005352
SSE	0.001253	0.000911	0.000683	0.000000	0.000000	0.000000	0.000000	0.000000	0.002847
S	0.001025	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001480
SSW	0.000569	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000797
SW	0.000569	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000911
WSW	0.000456	0.000114	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.000683
W	0.001253	0.002505	0.002278	0.001936	0.000000	0.000000	0.000000	0.000000	0.007972
WNW	0.001708	0.005466	0.007858	0.007972	0.000000	0.000000	0.000000	0.000000	0.023004
NW	0.000228	0.000911	0.000797	0.000456	0.000000	0.000000	0.000000	0.000000	0.002392
NNW	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
N	0.000000	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
CALM									0.001594
TOTAL	0.012869	0.017310	0.013552	0.010933	0.000000	0.000000	0.000000	0.000000	0.056258

MEAN WIND SPEED (m/s) = 2.85 NUMBER OF OBSERVATIONS = 494

PASQUILL STABILITY CLASS 'D'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50		3.00 TO 4.50		6.00 TO 7.50	7.50 TO 9.00		GREATER THAN 10.50	TOTAL
NNE	0.000456	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000683
NE	0.001594	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001822
ENE	0.001480	0.001594	0.000228	0.000342	0.000000	0.000000	0.000000	0.000000	0.003644
E	0.008769	0.017766	0.017880	0.008313	0.001936	0.000683	0.000000	0.000000	0.055347
ESE	0.016513	0.038264	0.024599	0.025737	0.009680	0.002278	0.000456	0.000000	0.117526
SE	0.013552	0.018563	0.015260	0.003189	0.000000	0.000000	0.000000	0.000000	0.050564
SSE	0.003530	0.002278	0.000797	0.000000	0.000000	0.000000	0.000000	0.000000	0.006605
S	0.002733	0.001025	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003758
SSW	0.002164	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002505
SW	0.002278	0.000911	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.003416
WSW	0.004214	0.001367	0.000797	0.000114	0.000000	0.000000	0.000000	0.000000	0.006491
W	0.006036	0.006947	0.003189	0.001936	0.002847	0.002164	0.000228	0.000000	0.023346
WNW	0.009224	0.021638	0.022549	0.019929	0.021524	0.012072	0.005580	0.002392	0.114907
NW	0.006264	0.007402	0.008200	0.010705	0.008086	0.007061	0.003075	0.002164	0.052955
NNW	0.000797	0.000683	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.001594
N	0.000569	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000683
CALM									0.027332
TOTAL	0.080173	0.119349	0.093839	0.070265	0.044072	0.024257	0.009338	0.004555	0.473181

MEAN WIND SPEED (m/s) = 3.62NUMBER OF OBSERVATIONS = 4155

PASQUILL STABILITY CLASS 'E'

Wind Speed Class (m/s)

MINID	0.50	1.50	3.00 TO	4.50 TO	6.00 TO	7.50	9.00	GREATER THAN	
WIND	TO	TO				TO	TO		шошат.
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NNE	0.000911	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000911
NE	0.000797	0.001025	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001822
ENE	0.001253	0.001708	0.001139	0.000000	0.000000	0.000000	0.000000	0.000000	0.004100
E	0.003758	0.009680	0.004783	0.000569	0.000000	0.000000	0.000000	0.000000	0.018791
ESE	0.005580	0.033254	0.036328	0.006036	0.000000	0.000000	0.000000	0.000000	0.081198
SE	0.007516	0.018221	0.004441	0.000000	0.000000	0.000000	0.000000	0.000000	0.030179
SSE	0.001480	0.001708	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003189
S	0.001480	0.000683	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002164
SSW	0.001367	0.000569	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001936
SW	0.001594	0.001025	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.003075
WSW	0.002392	0.002619	0.000569	0.000342	0.000000	0.000000	0.000000	0.000000	0.005922
W	0.002847	0.005352	0.000569	0.000000	0.000000	0.000000	0.000000	0.000000	0.008769
WNW	0.003075	0.017766	0.024485	0.003644	0.000000	0.000000	0.000000	0.000000	0.048969
NW	0.003416	0.005808	0.012983	0.003416	0.000000	0.000000	0.000000	0.000000	0.025624
NNW	0.001253	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001367
N	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
CALM									0.020727
TOTAL	0.038720	0.099647	0.085753	0.014008	0.000000	0.000000	0.000000	0.000000	0.258854

MEAN WIND SPEED (m/s) = 2.54 NUMBER OF OBSERVATIONS = 2273

PASQUILL STABILITY CLASS 'F'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	TO	TO	4.50 TO 6.00	TO	TO	9.00 TO 10.50	THAN	TOTAL
NNE	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
NE	0.000456	0.000797	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001253
ENE	0.002847	0.001594	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.004441
E	0.011047	0.007972	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.019018
ESE	0.018449	0.028357	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.046806
SE	0.025054	0.019246	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.044300
SSE	0.004555	0.002619	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.007175
S	0.002961	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003189
SSW	0.002392	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002505
SW	0.001936	0.000456	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002392
WSW	0.002164	0.000797		0.000000					
W	0.003530	0.003075	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.006605
WNW	0.008313	0.016627	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.024940
NW	0.006833	0.008200	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.015032
NNW	0.001367	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001367
N	0.000569	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000569
CALM									0.011274
TOTAL	0.092472	0.090081	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.193828

MEAN WIND SPEED (m/s) = 1.48NUMBER OF OBSERVATIONS = 1702

ALL PASQUILL STABILITY CLASSES

Wind Speed Class (m/s)

0.50 1.50 3.00 4.50 6.00 7.50 9.00 GREATER WIND TO TO TO TO TO TO TO THAN


```
SECTOR
            1.50
                     3.00
                             4.50
                                      6.00
                                                 7.50
                                                          9.00
                                                                  10.50
                                                                            10.50
                                                                                       TOTAL
  NNE
         0.001480\ 0.000228\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.0001708
         0.002847 \ 0.002050 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.0004897
   ENE
         0.006719\ 0.005125\ 0.001367\ 0.000342\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.013552
         0.025168 0.037695 0.023004 0.008883 0.001936 0.000683 0.000000 0.000000 0.097369
   ESE
         0.045325 \ \ 0.102836 \ \ 0.060927 \ \ 0.031773 \ \ 0.009680 \ \ 0.002278 \ \ 0.000456 \ \ 0.000000 \ \ 0.253274
         0.047831 \ 0.058308 \ 0.021182 \ 0.003644 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.130965
         0.011616 \ \ 0.007630 \ \ 0.001480 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.020727
   SSE
         S
         0.007516\ 0.001367\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000883
   SSW
    SW
         0.006947 \ 0.002961 \ 0.000683 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.010591
   WSW
         0.010705 \ 0.005352 \ 0.001367 \ 0.000569 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.017993
         0.014919\ 0.018904\ 0.006377\ 0.003872\ 0.002847\ 0.002164\ 0.000228\ 0.000000\ 0.049311
   WNW
         0.023574\ 0.063091\ 0.055233\ 0.031545\ 0.021524\ 0.012072\ 0.005580\ 0.002392\ 0.215010
         0.016855 \ \ 0.022549 \ \ 0.021979 \ \ 0.014577 \ \ 0.008086 \ \ 0.007061 \ \ 0.003075 \ \ 0.002164 \ \ 0.096344
   NW
         0.003416\ 0.000797\ 0.000114\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.004328
         0.001139\ 0.000228\ 0.000114\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.001480
  CALM
                                                                                    0.062407
  TOTAL 0.234825 0.331511 0.193828 0.095206 0.044072 0.024257 0.009338 0.004555 1.000000
  MEAN WIND SPEED (m/s) = 2.84
  NUMBER OF OBSERVATIONS = 8781
  FREQUENCY OF OCCURENCE OF STABILITY CLASSES
    A: 0.6%
   B: 1.2%
    C : 5.6%
    D: 47.3%
    E: 25.9%
    F: 19.4%
  STABILITY CLASS BY HOUR OF DAY
                  CDE
  Hour A B
    01 0000 0000 0000 0044 0156 0166
    02 0000 0000 0000 0044 0167 0154
    03 0000 0000 0000 0046 0160 0160
    04 0000 0000 0000 0041 0164 0161
    05 0000 0000 0000 0060 0160 0146
    06 0000 0000 0000 0101 0129 0136
    07 0001 0002 0002 0218 0073 0070
    08 0003 0004 0005 0354 0000 0000
    09 0002 0005 0018 0341 0000 0000
    10 0003 0006 0041 0316 0000 0000
    11 0006 0013 0051 0296 0000 0000
    12 0006 0019 0085 0256 0000 0000
    13 0013 0020 0071 0262 0000 0000
    14 0006 0014 0086 0260 0000 0000
    15 0004 0013 0073 0276 0000 0000
    16 0005 0007 0042 0289 0021 0002
    17 0002 0003 0020 0250 0072 0019
    18 0000 0000 0000 0189 0128 0049
    19 0000 0000 0000 0160 0150 0056
    20 0000 0000 0000 0111 0180 0075
    21 0000 0000 0000 0071 0202 0093
    22 0000 0000 0000 0061 0189 0116
    23 0000 0000 0000 0057 0174 0135
    24 0000 0000 0000 0052 0148 0164
  STABILITY CLASS BY MIXING HEIGHT
                              C
                        В
                                   D
  Mixing height
                                        Е
      <=500 m
                0004 0006 0018 0830 2160 1681
     <=1000 m
                0015 0029 0168 1357 0033 0006
               0032 0071 0308 1481 0080 0015
     <=1500 m
```


<=2000 m 0000 0000 0000 0232 0000 0000 <=3000 m 0000 0000 0000 0236 0000 0000 >3000 m 0000 0000 0000 0019 0000 0000

MIXING HEIGHT BY HOUR OF DAY

	0000	0100	0200	0400	0800	1600	Greater
	to	to	to	to	to	to	than
Hour	0100	0200	0400	0800	1600	3200	3200
01	0135	0124	0069	0008	0011	0019	0000
02	0142	0117	0067	8000	0012	0019	0000
03	0153	0104	0075	0006	0009	0018	0001
04	0167	0105	0063	0004	0012	0015	0000
05	0194	0086	0047	0005	0016	0017	0001
06	0117	0120	0107	0001	0007	0013	0001
07	0126	0056	0114	0070	0000	0000	0000
80	0000	0064	0130	0172	0000	0000	0000
09	0000	0000	0099	0188	0079	0000	0000
10	0000	0000	0000	0236	0130	0000	0000
11	0000	0000	0000	0142	0224	0000	0000
12	0000	0000	0000	0092	0274	0000	0000
13	0000	0000	0000	0000	0366	0000	0000
14	0000	0000	0000	0000	0366	0000	0000
15	0000	0000	0000	0000	0366	0000	0000
16	0000	0000	0000	0000	0366	0000	0000
17	0010	0011	0013	0004	0313	0014	0001
18	0029	0047	0051	0006	0195	0037	0001
19	0044	0074	0090	0014	0055	0089	0000
20	0049	0099	0110	0006	0026	0076	0000
21	0069	0106	0124	0009	0013	0045	0000
22	0088	0119	0106	0006	0015	0032	0000
23	0100	0133	0800	0006	0015	0030	0002
24	0127	0126	0062	0007	0013	0028	0001

 $\begin{array}{c} \textbf{Appendix: Dust deposition, TEOM PM_{10} monitoring and HVAS TSP} \\ \textbf{monitoring data} \end{array}$

Table D.: Dust deposition monitoring data (g/m²/month)

						Donociti	on gou	go TD						
	Month	DG2	DG3	DG4	DG5	Depositi DG6	DG7	DG8	DG9	DG10	DG11	DG12	DG13	DG14
2004	January	1.4	2.2	1.6	3.1	2.1	2.5	2.8	3.7	2.5	1.8	6.8	2.6	ND
2001	February	4.1	3.9	1.5	2.2	2.0	2.0	2.3	ND	1.6	1.9	11.6	35.2	ND
	March	8.8	1.3	3.9	2.3	1.8	2.9	2.5	5.2	1.9	0.8	32.7	3.7	ND
	April	ND	1.6	6.9	2.3	2.6	4.9	3.1	ND	4.9	4.3	30.7	2.4	ND
	May	ND	5.2	3.4	4.1	2.8	3.7	2.8	3.4	1.7	ND	30.7	2.4	ND
	June	2.6	6.1	4.2	2.0	2.6	5.1	2.7	3.8	4.1	1.5	26.6	4.2	ND
	July	4.8	15.3	8.5	2.6	2.6	4.2	3.2	4.6	4.0	2.1	43.5	20.0	ND
	August	2.0	7.7	2.9	1.4	2.6	3.0	2.4	4.8	1.0	2.4	3.4	2.4	ND
	September	3.1	2.9	3.2	0.5	2.0	2.2	2.8	0.5	5.3	2.8	7.9	2.8	ND
	October	ND	4.5	2.5	1.4	1.5	2.3	1.9	2.5	1.2	1.5	2.9	ND	ND
	November	1.4	4.1	0.2	0.3	2.3	1.1	3.4	0.6	4.4	1.2	1.2	0.4	ND
	December	2.7	1.2	1.0	1.5	1.9	2.0	1.7	ND	2.7	0.4	4.3	1.5	ND
	Average	3.4	4.7	3.3	2.0	2.2	3.0	2.6	3.2	2.9	1.9	16.9	7.1	-
2005	January	2.1	2.6	2.5	2.2	3.3	3.5	2.7	ND	6.6	2.3	7.5	3.9	ND
	February	1.9	2.7	1.4	1.9	1.4	2.5	2.7	1.4	6.5	1.2	5.0	ND	ND
	March	2.3	2.4	1.1	1.7	1.6	2.5	2.3	ND	2.6	ND	4.5	2.7	ND
	April	0.7	2.5	ND	2.5	1.9	3.5	2.7	2.8	3.2	1.5	8.2	ND	ND
	May	2.8	3.3	1.5	1.0	2.3	2.7	3.3	2.7	4.2	1.4	8.3	2.7	ND
	June	ND	7.4	ND	ND	ND	4.3	2.4	2.2	3.3	1.8	4.1	ND	ND
	July	4.7	3.8	3.8	2.3	3.9	3.3	3.3	4.5	3.1	1.8	5.5	3.9	ND
	August	ND	1.4	2.2	ND	2.7	3.8	2.9	2.8	1.9	1.8	6.1	2.5	ND
	September	3.1	3.5	2.8	2.3	3.0	5.1	2.7	2.6	2.0	1.8	5.0	5.1	ND
	October	3.9	3.7	2.8	1.5	0.8	2.3	2.6	3.1	0.7	2.2	2.7	ND	ND
	November	6.5	1.8	ND	5.5	4.1	3.6	3.4	5.4	2.3	2.5	7.7	7.4	ND
	December	4.5	6.5	2.1	5.7	2.6	3.5	1.9	2.0	1.7	2.4	10.5	2.4	ND
	Average	3.3	3.5	2.2	2.7	2.5	3.4	2.7	3.0	3.2	1.9	6.3	3.8	-
2006	January	1.5	3.1	1.4	1.7	2.9	3.6	2.7	2.0	2.4	1.6	7.1	5.9	ND
	February	1.3	1.5	2.7	ND	1.6	ND	2.5	3.3	1.9	1.2	8.4	ND	ND
	March	2.7	1.4	5.7	4.6	2.0	3.0	2.1	4.1	5.0	1.1	3.4	ND	ND
	April	3.9	2.1	2.7	1.7	1.7	4.6	2.3	2.9	2.4	2.2	7.0	4.5	ND
	May	2.0	3.2	ND	3.8	3.0	3.8	4.4	5.5	3.1	4.2	ND	3.7	ND
	June	2.7	5.0	2.0	1.7	2.4	7.1	3.3	4.9	4.2	1.9	ND	6.1	ND
	July	1.6	3.1	3.4	2.5	3.4	6.8	3.9	ND	3.0	2.9	ND	4.8	ND
	August	1.9	8.4	4.0	2.6	4.4	9.9	4.9	2.9	5.6	3.5	ND	4.2	ND
	September	2.6	8.8	0.9	1.4	ND	2.9	3.3	6.5	1.2	1.8	ND	3.3	ND
	October	1.2	7.8	3.0	2.3	3.9	5.4	3.5	ND	2.6	2.2	ND	ND	1.9
	November	2.0	6.5	3.0	2.8	4.6	4.9	4.9	ND	3.0	2.9	ND	4.7	4.7
	December	3.0	3.7	1.1	2.6	2.1	2.8	2.9	3.1	1.6	1.9	ND	ND	2.9
	December Average	3.0 2.2	3.7 4.6	1.1 2.7	2.6 2.5	2.1 2.9	2.8 5.0	2.9 3.4		1.6 3.0	1.9 2.3	ND 6.5	ND 4.7	2.9 3.2
2007					1				3.1					
2007	Average	2.2 3.8 C	4.6 2.5 3.6	2.7 1.3 3.3	2.5 1.9 3.5	2.9 1.7 3.0	5.0 3.3 3.7	3.4 2.6 3.4	3.1 3.9 3.1 2.6	3.0	2.3 1.9 3.2	6.5	4.7 4.7 4.9	3.2 1.6 1.7
2007	Average January	2.2 3.8 C 3.9	4.6 2.5 3.6 C	2.7 1.3	2.5 1.9 3.5 3.6	2.9 1.7 3.0 3.3	5.0 3.3 3.7 7.9	3.4 2.6 3.4 3.6	3.1 3.9 3.1 2.6 4.1	2.7 2.5 2.1	2.3 1.9 3.2 4.4	6.5 ND	4.7 4.7 4.9 6.5	3.2 1.6 1.7 CT4.8
2007	Average January February	2.2 3.8 C 3.9	4.6 2.5 3.6 C 12.6	2.7 1.3 3.3	2.5 1.9 3.5 3.6 2.1	2.9 1.7 3.0 3.3 3.9	5.0 3.3 3.7 7.9 6.0	3.4 2.6 3.4 3.6 3.1	3.1 3.9 3.1 2.6 4.1 1.5	3.0 2.7 2.5 2.1 4.9	2.3 1.9 3.2 4.4 3.3	ND ND ND ND	4.7 4.7 4.9 6.5 1.5	3.2 1.6 1.7
2007	Average January February March April May	2.2 3.8 C 3.9 C 4.7	4.6 2.5 3.6 C 12.6 10.0	2.7 1.3 3.3 4.0 1.4	2.5 1.9 3.5 3.6 2.1 1.3	2.9 1.7 3.0 3.3 3.9 4.0	5.0 3.3 3.7 7.9 6.0 5.4	3.4 2.6 3.4 3.6 3.1 4.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6	3.0 2.7 2.5 2.1 4.9 1.7	2.3 1.9 3.2 4.4 3.3 4.7	ND ND ND ND ND ND	4.7 4.7 4.9 6.5 1.5 5.7	3.2 1.6 1.7 CT4.8 4.8 1.7
2007	Average January February March April May June	2.2 3.8 C 3.9 C 4.7 6.8	4.6 2.5 3.6 C 12.6 10.0 Decommissioned	2.7 1.3 3.3 4.0 1.4	2.5 1.9 3.5 3.6 2.1 1.3 1.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6	5.0 3.3 3.7 7.9 6.0 5.4 3.0	3.4 2.6 3.4 3.6 3.1 4.3 3.5	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4	3.0 2.7 2.5 2.1 4.9 1.7 2.5	2.3 1.9 3.2 4.4 3.3 4.7 1.3	ND	4.7 4.7 4.9 6.5 1.5 5.7	3.2 1.6 1.7 CT4.8 4.8 1.7
2007	Average January February March April May June July	2.2 3.8 C 3.9 C 4.7 6.8 3.2	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1	2.5 1.9 3.5 3.6 2.1 1.3 1.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0	2.3 1.9 3.2 4.4 3.3 4.7 1.3	6.5 ND ND ND ND ND ND ND	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9
2007	Average January February March April May June July August	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3
2007	Average January February March April May June July August September	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9
2007	Average January February March April May June July August September October	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9
2007	Average January February March April May June July August September October November	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3
2007	Average January February March April May June July August September October November December	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6	3.0 2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 4.1 2.9 2.3 5.3	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 C
	Average January February March April May June July August September October November December Average	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0
2007	Average January February March April May June July August September October November December Average January	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 6.6 3.7 4.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 1.5 2.8 3.0	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8
	Average January February March April May June July August September October November December Average January February	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND 3.7 ND 2.4	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 2.3 C 2.0 0.8 5.3
	Average January February March April May June July August September October November December Average January February March	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND ND ND 2.4 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3
	Average January February March April May June July August September October November December Average January February March April	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND ND ND ND ND ND 4.1	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 2.2	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.5 1.7 2.9 1.5 2.1 4.1	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 2.3 C 2.0 0.8 5.3 3.5 1.0
	Average January February March April May June July August September October November December Average January February March April May	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND SD ND ND ND 4.1 8.0	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 2.0	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 3.2	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND ND ND ND ND ND ND ND ND ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.5 1.7 2.9 1.5 2.1 4.1 1.4	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 3.0 3.8	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6
	Average January February March April May June July August September October November December Average January February March April May June	2.2 3.8 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 4.1 8.7 8.0	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND 3.7 ND 2.4 ND 2.5 4.1 8.0 5.6	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 2.2 3.1	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1
	Average January February March April May June July August September October November December Average January February March April May June July	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND ND ND 2.4 ND 4.1 8.0 6.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.3 3.9 4.0 3.3 3.9 4.0 3.3 3.9 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.3 2.6 3.6 2.9	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 4.1 2.1 4.1 2.1	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1 6.1 3.0 3.8 8.3 9.0 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3
	Average January February March April May June July August September October November December Average January February March April May June July August	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND 4.1 8.0 5.6 ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.7	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 1.3 2.2 N.5	3.4 2.6 3.4 3.5 6.4 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 2.6 3.2 2.9	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 ND 2.2 3.0 ND 3.7 3.7 4.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.1 4.1 2.1 4.1 2.1 2.4 3.4	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3
	Average January February March April May June July August September October November December Average January February March April May June July August September	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND 3.7 ND ND 4.1 8.0 5.6 ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.5	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 3.2 2.3 2.6 3.2 4.7 4.2	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 2.2 3.0 5.5 ND 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.0
	Average January February March April May June July August September October November December Average January February March April May June July August September	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 5.1	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND 3.7 ND 2.4 ND 4.1 8.0 5.6 ND ND ND 7.0	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 1.5 1.9 1.7 3.6 4.6	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 2.3 2.6 3.2 2.3 2.6 3.2 2.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND D 2.2 3.0 4.1 4.1 4.1 4.1 4.1 5.5 8.6 8.7 4.1 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.1 4.1 2.1 4.1 2.1 2.4 3.4	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 3.0 3.8 3.0 ND 4.8	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 3.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Average January February March April May June July August September October November December Average January February March April May June July August September November	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 4.1 4.2 8.1 8.7 8.0	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND S.7 ND 2.4 ND 4.1 8.0 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 1.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.6 3.6 2.9 4.7 4.7	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 4.1 1.5 3.6	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 2.1 4.1 2.1 4.1 2.1 4.4 2.6 3.4 3.6 3.7 4.7 4.9 4.9 4.9 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 ND 3.8 3.0 ND 3.4 ND 4.8 3.7	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.5 1.6 1.7 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Average January February March April May June July August September October November December Average January February March April May June July August	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 5.1 5.2 6.6	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND 2.4 ND 4.1 8.0 5.6 ND ND ND ND ND ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.9 1.7 3.6 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 5.5 4.3 6.1 3.2 ND 3.5 4.3 2.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.3 2.6 3.6 2.9 4.7 4.2 3.3 3.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.7	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 2.4 2.6 3.4 3.6 4.0	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1 6.1 3.0 3.8 8.3 9.0 ND 4.8 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.9 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December Average January February March April May June July August September October November December Average	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 2.6 5.5	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND 4.1 8.0 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.7 3.6 4.6 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.3 4.0 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 2.4 ND 2.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.1 3.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 6.1 3.2 8.3 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	3.4 2.6 3.4 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.3 3.3 3.3 3.3 3.3	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 2.1 4.1 3.0 3.0 3.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND 4.3	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 3.4 3.6 4.0	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1 6.1 3.0 3.8 3.0 ND 3.4 ND 4.8 3.7 4.0	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.9 4.8 5.3 3.5 1.0 4.6 4.6 4.6 4.7 4.8 5.3 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
	Average January February March April May June July August September October November December Average January February March April May June July August September October November December Average January	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 5.1 3.5 5.6 4.0	4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND S.4 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.6	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.8 3.5 4.8 3.6 4.8 3.7 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	3.4 2.6 3.4 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.3 3.3 3.3 3.3 3.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.1 3.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 6.9 ND ND ND 4.3 3.7	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 3.4 3.6 4.0	ND	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND 3.4 ND 4.8 3.7 3.7 4.9 4.9 4.9 4.9 4.9 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 3.0 4.3 1.5 1.4 3.0 4.3 1.6 2.5 ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December Average January February February February March April May June June June July August September October November December Average January February	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 5.1 3.5 2.6 5.5 4.0 ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND ND ND ND S.6 ND ND ND S.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.1 2.6 4.1 ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 2.8 3.6 4.0 2.1	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 2.6 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.0 3.1 2.7	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8	ND	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 3.0 3.8 3.0 ND 4.8 3.7 3.7 4.9 4.9 4.1 5.7 4.1 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.9 1.9 1.0 2.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1
2008	Average January February March April May June July August September October November December Average January February March April May June July August September Average January February March April May June July August September October November December Average January February March	2.2 3.8 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 2.6 5.5 4.0 ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND 2.4 ND ND 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 3.0 1.8 1.9 1.2 2.0 5.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.6 4.1 ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 2.1 2.1 2.1 2.9 2.8	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 6.1 3.2 8.6 4.8 3.4 4.8 3.4 1.9 4.8 3.4 1.9 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.6 3.6 2.9 4.7 4.7 4.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.0 3.1 3.1 3.1 2.7 6.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 2.8 7.4 1.7 1.7 2.8 7.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 4.1 2.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9	ND	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 ND 3.8 3.0 ND 3.4 ND 4.8 3.7 3.7 4.0 5.7 5.7 5.7 5.7 5.7 5.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.5 1.6 2.1 2.3 1.5 1.6 2.1 2.3 2.3 2.3 2.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December Average January February March April April August September October November December Average January February August September October November December Average January February February	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 5.1 5.5 4.0 ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND S.7 ND 2.4 ND 4.1 8.0 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 5.2 2.2 2.0 1.5 1.9 1.7 3.6 4.6 4.1 ND 4.4 3.8	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 5.5 4.3 6.1 3.2 ND 3.5 4.3 6.1	3.4 2.6 3.4 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.9 4.7 4.2 3.3 3.5 6.4 2.0 1.9 1.7 1.3 3.5 6.4 2.6 3.2 2.3 2.6 3.6 3.7 4.7 4.2 3.3 3.5 6.4 3.5 6.4 3.5 6.4 3.5 6.4 3.5 6.4 3.5 6.4 3.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.0 3.1 3.1 2.7 6.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 3.9 3.0	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 ND 3.8 ND 3.4 ND 4.8 3.7 3.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 4.8 1.7 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 1.9 1.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October Average January February March April May June July August September October November December Average January February August March April May	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 5.5 4.0 ND 2.8	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND ND 4.1 8.0 S.6 ND ND ND ND ND S.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.6 4.1 ND 4.4 3.8 5.6	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.1 3.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 6.1 3.2 ND 3.5 4.8 3.6 4.8 3.6 4.8 3.6 4.8 3.6 4.8 3.6 4.8 3.7 4.8 3.8 4.8 3.9 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 3.0 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	3.4 2.6 3.4 3.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.9 4.7 4.2 3.3 3.3 3.5 6.4 2.0 1.9 1.6 2.0 2.0 3.2 2.3 2.6 3.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 2.1 4.1 3.0 3.0 3.1 3.1 2.7 6.1	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 ND ND ND ND ND ND 4.3 3.7 ND 4.3 3.7 ND 4.3 1.7 ND 4.3 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 2.3	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1 6.1 3.0 3.8 3.0 ND 3.4 ND 4.8 3.7 4.0 5.5 ND 7.4 4.1 6.5 ND 7.5 ND 7.6 ND 7.6 ND 7.7 ND N	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 1.2 2.3 1.5 1.4 3.0 4.3 1.5 1.6 2.6 2.1 1.7 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October Average January February Angust September October November June July August September October November December Average January February March April May June	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 5.6 5.5 4.0 ND 2.8 7.0	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND S.4 ND ND S.4 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 4.6 2.1 2.6 4.1 ND 4.4 3.8 5.6 ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.0 3.1 1.2 2.4 ND 2.3 3.0 3.0 3.1 1.2 2.4 ND 2.3 3.0 3.0 3.1 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 3.6 4.0 2.1 3.1 5.3 5.0 ND	3.4 2.6 3.4 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.9 4.7 4.2 3.3 3.3 3.5 6.4 7.7 7.7 8.7 8.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.1 3.1 2.7 6.1 2.9 2.8 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 6.0 9 ND ND 2.5 ND ND 4.3 3.7 ND 4.3 1.7 ND 4.3 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND 4 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 ND	ND N	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND 3.4 ND 4.8 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 1.4 3.0 4.3 1.6 2.5 ND 3.5 2.0 1.8 1.7 ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October Average January February March April May June July August September October November December Average January February March April May June July	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 2.6 5.5 4.0 ND 2.5 ND 2.8 7.0 ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND ND ND ND ND ND S.7 ND ND ND ND ND S.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.1 2.1 2.1 2.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 ND 4.4 3.8 5.6 ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 2.8 2.8 3.6 4.0 2.1 3.1 5.3 ND	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 3.2 2.3 2.6 3.2 2.3 2.6 3.3 3.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 1.9 1.7 1.3 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.0 3.1 2.7 6.1 2.9 2.8 ND ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 6.9 ND ND 2.5 ND ND 2.5 ND ND 2.5 ND ND 2.5 ND ND 2.5 ND ND 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 1.9 3.2 4.4 3.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 ND ND	ND	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND 4.8 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 4.3 1.6 2.5 ND 3.5 2.0 1.8 1.7 ND ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November January February March April May June July August September October November December Average January February June July August September October November December Average January February March April May June July August	2.2 3.8 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 4.1 4.1 5.1 3.5 2.6 5.5 4.0 ND 2.5 ND 2.8 7.0 ND ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND 3.7 ND 2.4 ND ND 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 3.5 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.6 4.1 ND 4.4 3.8 5.6 ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 2.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 2.8 3.6 4.0 ND ND ND	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.1 3.9 3.1 2.6 4.1 1.5 3.6 1.4 6.2 ND ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 3.0 3.0 3.1 3.1 2.7 6.1 2.9 2.8 ND ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 7.4 1.7 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND 4.3 3.7 ND ND 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 4.1 2.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 0.2 3.N ND ND	ND	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 ND 3.4 ND 3.4 ND 4.8 3.7 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND ND ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 4.3 1.6 2.5 ND 4.3 1.6 2.5 ND ND ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December July August September October November December Average January February March April May June July August September Average January February February February February February February March April May June July August September	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 5.5 2.6 5.5 4.0 ND ND ND ND ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 4.2 ND ND ND 3.7 ND 2.4 ND 4.1 8.0 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.0 5.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 2.1 2.1 2.6 4.1 ND A4.4 3.8 5.6 ND ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 1.1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 2.8 3.6 4.0 2.1 5.3 5.0 ND ND ND	3.4 2.6 3.4 3.6 3.1 4.3 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.6 2.9 4.7 4.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 5.5 ND 2.3 2.1 4.1 3.0 3.0 3.1 4.1 5.0 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 2.8 7.4 1.7 3.0 6.9 ND ND ND ND 4.3 3.7 ND	2.3 1.9 3.2 4.4 3.3 4.7 1.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 2.3 ND ND ND ND	ND	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.1 6.1 3.0 ND 3.4 ND 4.8 3.7 3.7 4.0 5.5 ND ND ND ND ND ND ND ND ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 4.3 1.6 2.5 ND 3.5 ND 3.5 2.0 1.8 1.7 ND ND ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December July August September October November December Average January February March April May June July August September Average January February March April May June July August September October	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 5.1 5.5 6.6 5.5 4.0 ND ND ND ND ND ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND ND 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 4.1 ND ND ND ND ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND ND ND ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.1 3.2 5.5 3.5 4.3 2.2 ND 3.5 4.3 2.8 2.8 3.6 4.0 2.1 5.3 5.0 ND ND ND ND ND ND	3.4 2.6 3.4 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.5 6.4 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 3.1 2.7 4.1 3.0 3.0 3.1 3.1 2.7 6.1 2.9 2.8 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND ND 4.3 3.7 ND ND 2.5 ND ND ND 2.5 ND	2.3 1.9 3.2 4.4 3.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 2.1 4.1 2.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 2.3 ND ND ND ND ND ND	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.0 ND 3.4 ND 4.8 3.7 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND ND ND ND ND ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 2.5 ND 3.5 2.0 1.8 1.7 ND ND ND ND ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November June July August September October November June July August September October Average January February March April May June July August September October Average January February March April May June July August September October November	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 3.5 5.5 4.0 ND 2.8 7.0 ND ND ND ND ND ND ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 4.1 ND 4.4 3.8 5.6 ND ND ND ND ND ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 ND 4.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND ND ND ND ND ND ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.4 1.3 2.2 5.5 3.5 4.3 6.1 3.2 ND 3.5 4.3 2.8 3.6 4.0 2.1 3.1 5.3 5.0 ND ND ND ND ND ND ND	3.4 2.6 3.4 3.5 6.4 2.6 2.0 1.9 1.7 1.3 3.0 1.6 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.9 4.7 4.2 3.3 3.3 3.1 3.3 3.1 ND ND ND ND ND ND ND	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 2.1 4.1 3.0 3.1 2.7 6.1 3.0 3.1 2.7 6.1 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 4.0 2.8 7.4 1.7 3.0 6.0 ND ND ND A.3 3.7 ND 4.3 3.7 ND 2.5 ND	2.3 1.9 3.2 4.4 3.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 1.4 2.4 3.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 ND ND ND ND ND ND ND ND	ND	4.7 4.7 4.9 6.5 1.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 3.9 4.1 6.1 3.0 3.8 3.0 ND 3.4 ND 4.8 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 1.4 3.0 4.3 1.6 2.5 ND 3.5 2.0 ND ND ND ND ND ND ND
2008	Average January February March April May June July August September October November December Average January February March April May June July August September October November December July August September October November December Average January February March April May June July August September Average January February March April May June July August September October	2.2 3.8 C 3.9 C 4.7 6.8 3.2 2.7 2.9 2.9 3.2 C 3.8 2.4 7.6 4.1 4.1 8.7 8.0 4.2 8.1 8.1 5.1 5.1 5.5 6.6 5.5 4.0 ND ND ND ND ND ND	### 4.6 2.5 3.6 C 12.6 10.0 Decommissioned ND ND ND ND ND ND ND ND ND N	2.7 1.3 3.3 4.0 1.4 6.4 6.1 2.5 ND ND ND ND 3.7 ND 2.4 ND ND 5.6 ND	2.5 1.9 3.5 3.6 2.1 1.3 1.2 1.9 1.3 3.0 1.8 1.9 1.2 2.1 2.2 2.0 5.2 2.0 1.5 1.9 1.7 3.6 4.6 4.1 ND ND ND ND ND ND	2.9 1.7 3.0 3.3 3.9 4.0 2.6 5.2 2.1 3.6 1.9 3.3 2.3 3.1 1.2 2.4 ND 2.3 3.0 3.4 3.2 4.7 ND 4.1 2.1 2.1 2.9 2.8 2.7 4.5 3.9 3.4 ND ND ND ND ND ND	5.0 3.3 3.7 7.9 6.0 5.4 3.0 9.0 2.4 4.8 3.4 1.9 1.5 4.1 3.2 5.5 3.5 4.3 2.2 ND 3.5 4.3 2.8 2.8 3.6 4.0 2.1 5.3 5.0 ND ND ND ND ND ND	3.4 2.6 3.4 3.5 6.4 2.0 1.9 1.7 1.3 3.0 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.2 2.3 2.6 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.5 6.4 4.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	3.1 3.9 3.1 1.5 3.6 1.4 6.2 ND ND 3.7 3.7 6.6 3.7 4.1 1.5 ND 2.2 3.0 3.1 2.7 4.1 3.0 3.0 3.1 3.1 2.7 6.1 2.9 2.8 ND	2.7 2.5 2.1 4.9 1.7 2.5 5.0 1.6 1.3 5.6 15 2.8 3.0 2.8 7.4 1.7 3.0 6.0 6.9 ND ND ND ND 4.3 3.7 ND ND 2.5 ND ND ND 2.5 ND	2.3 1.9 3.2 4.4 3.3 1.2 4.6 4.9 1.9 1.5 1.7 2.9 1.5 2.1 4.1 2.1 2.1 4.1 2.4 2.6 3.4 3.6 4.0 3.8 2.8 3.6 1.8 2.9 3.0 2.3 ND ND ND ND ND ND	ND N	4.7 4.7 4.9 6.5 5.7 1.4 4.1 1.8 3.0 2.9 2.3 5.3 3.7 4.0 ND 3.4 ND 4.8 3.7 3.7 4.0 5.5 ND 7.4 6.9 4.7 ND ND ND ND ND ND	3.2 1.6 1.7 CT4.8 4.8 1.7 1.9 1.3 1.9 1.2 1.3 2.3 C 2.0 0.8 5.3 3.5 1.0 2.6 2.1 2.3 1.5 1.4 3.0 4.3 1.6 2.5 ND 3.5 2.0 1.8 1.7 ND ND ND ND ND ND

Notes:

ND – No data C – Sample contaminated

Appendix : Example ISCMOD input file


```
** ISCST3 model input runstream : Dust - Y3 Ashton second run
CO STARTING
  TITLEONE ISCST3 Dust Model Run
  MODELOPT RURAL CONC DDEP DRYDPLT HE>ZI
  AVERTIME 24 PERIOD
  POLLUTID TSP
  ERRORFIL C:\Jobs\Ashton2008\ISC\Year3\Model2\error.log
  TERRHGTS ELEV
  RUNORNOT RUN
CO FINISHED
SO STARTING
  LOCATION
            POINT1 VOLUME 319733 6403748 59.8
            POINT2
                    VOLUME
                             319908 6403748 61.0
  LOCATION
  LOCATION
            POINT3
                     VOLUME
                             320133 6403741 68.4
                     VOLUME
                             320505 6403741 68.6
  LOCATION
            POINT4
  LOCATION
            POINT5
                     VOLUME
                             319726 6403974 60.4
                     VOLUME
                             319915 6403959 63.0
  LOCATION
            POINT6
                             320075 6403901 64.4
  LOCATION
            POINT7
                     VOLUME
  LOCATION
            POINT8
                     VOLUME
                             320265 6403894 66.4
  LOCATION
            POINT9
                    VOLUME
                             319733 6403857 60.0
                     VOLUME
                             319995 6403835 62.8
  LOCATION
            POINT10
                             320206 6403799 67.4
                      VOLUME
  LOCATION
            POINT11
  LOCATION
            POINT12
                     VOLUME
                             320381 6403726 69.0
  LOCATION
            POINT13
                      VOLUME
                              320512 6403617 72.4
  LOCATION
            POINT14
                     VOLUME
                             320658 6403537 76.7
  LOCATION
            POINT15
                      VOLUME
                             320826 6403573 75.8
  LOCATION
            POINT16
                      VOLUME
                              320993 6403588 77.8
  LOCATION
            POINT17
                      VOLUME
                             320826 6403675 74.7
  LOCATION
            POINT18
                      VOLUME
                              320665 6403777 72.1
                             320578 6403952 72.6
            POINT19
                      VOLUME
  LOCATION
  LOCATION
            POINT20
                      VOLUME
                             320359 6404010 71.4
  LOCATION
            POINT21
                      VOLUME
                              320133 6404090 70.5
  LOCATION
            POINT22
                      VOLUME
                             321066 6403624 78.9
  LOCATION
            POINT23
                      VOLUME
                              320804 6403777 75.5
                              320680 6403901 75.0
                      VOLUME
  LOCATION
            POINT24
  LOCATION
            POINT25
                     VOLUME 320563 6404018 74.0
            POINT26
                      VOLUME
                              319842 6403886 61.2
  LOCATION
  LOCATION
            POINT27
                      VOLUME
                             320141 6403850 65.5
                      VOLUME
  LOCATION
            POINT28
                              320403 6403835 67.8
  LOCATION
            POINT29
                      VOLUME
                              320184 6403974 66.9
  LOCATION
            POINT30
                      VOLUME
                             320010 6404061 66.1
  LOCATION
            POINT31
                      VOLUME
                              319820 6404127 63.0
  LOCATION
            POINT32
                      VOLUME
                             319543 6404214 59.1
                             320775 6403464 80.2
                      VOLUME
  LOCATION
            POINT33
  LOCATION
            POINT34
                      VOLUME
                              320971 6403515 78.4
                              321124 6403486 81.7
  LOCATION
            POINT35
                      VOLUME
  LOCATION
            POINT36
                      VOLUME
                              320920 6403726 78.0
                             320687 6403661 72.0
  LOCATION
            POINT37
                      VOLUME
  LOCATION
            POINT38
                     VOLUME
                             320541 6403872 70.2
  LOCATION
            POINT39
                      VOLUME
                              319929 6404178 66.6
  LOCATION
            POINT40
                      VOLUME
                              319696 6404069 61.3
                      VOLUME
                              319696 6404258 61.4
  LOCATION
            POINT41
  LOCATION
            POINT42
                      VOLUME
                              319529 6404120 58.0
  LOCATION
            POINT43
                      VOLUME
                             319536 6404316 60.7
  LOCATION
            POINT44
                      VOLUME
                              319492 6404280 60.2
                              319500 6404498 60.3
  LOCATION
            POINT45
                      VOLUME
                      VOLUME
                              319500 6404761 59.9
  LOCATION
            POINT46
  LOCATION
            POINT47
                      VOLUME
                              319507 6404957 65.5
                      VOLUME
                             319405 6405241 86.5
  LOCATION
            POINT48
  LOCATION
            POINT49
                      VOLUME
                              319325 6405526 99.5
                      VOLUME
                              319208 6405846 98.3
  LOCATION
            POINT50
  LOCATION
            POINT51
                      VOLUME
                             319325 6405955 92.1
  LOCATION
            POINT52
                      VOLUME
                              319135 6406174 72.7
  LOCATION
            POINT53
                      VOLUME
                             318968 6406363 78.9
  LOCATION
            POINT54
                      VOLUME
                              318873 6406458 78.6
  LOCATION
            POINT55
                      VOLUME
                              318888 6406611 74.5
  LOCATION
            POINT56
                      VOLUME
                             318771 6406779 69.0
                              318924 6406749 70.8
  LOCATION
            POINT57
                      VOLUME
                              319070 6406924 69.6
  LOCATION
            POINT58
                      VOLUME
                      VOLUME
                              319296 6406932 75.0
  LOCATION
            POINT59
  LOCATION
            POINT60
                      VOLUME
                              318918 6406871 69.9
  LOCATION
            POINT61
                      VOLUME
                              319256 6406673 61.0
  LOCATION
            POINT62
                      VOLUME
                              319733 6403748 59.8
                      VOLUME
                              319908 6403748 61.0
  LOCATION
            POINT63
  LOCATION
            POINT64
                      VOLUME
                              320133 6403741 68.4
  LOCATION
            POINT65
                      VOLUME
                              320505 6403741 68.6
  LOCATION
            POINT66
                      VOLUME
                              319726 6403974 60.4
```


LOCATION	POINT67	VOLUME	319915 6	5403959 63.0
LOCATION	POINT68	VOLUME	320075 6	5403901 64.4
LOCATION	POINT69	VOLUME	320265 6	5403894 66.4
LOCATION	POINT70	VOLUME	319733 6	403857 60.0
LOCATION	POINT71	VOLUME	319995 6	5403835 62.8
LOCATION	POINT72	VOLUME	320206 6	5403799 67.4
LOCATION	POINT73	VOLUME	320381 6	5403726 69.0
LOCATION	POINT74	VOLUME	320512 6	5403617 72.4
LOCATION	POINT75	VOLUME	320658 6	5403537 76.7
LOCATION	POINT76	VOLUME	320826 6	5403573 75.8
LOCATION	POINT77	VOLUME		5403588 77.8
LOCATION	POINT78	VOLUME	320826 6	5403675 74.7
LOCATION	POINT79	VOLUME	320665 6	5403777 72.1
LOCATION	POINT80	VOLUME	320578 6	5403952 72.6
LOCATION	POINT81	VOLUME	320359 6	5404010 71.4
LOCATION	POINT82	VOLUME		5404090 70.5
LOCATION	POINT83	VOLUME	321066 6	5403624 78.9
LOCATION	POINT84	VOLUME	320804 6	5403777 75.5
LOCATION	POINT85	VOLUME	320680 6	5403901 75.0
LOCATION	POINT86	VOLUME	320563 6	5404018 74.0
LOCATION	POINT87	VOLUME	319842 6	403886 61.2
LOCATION	POINT88	VOLUME	320141 6	403850 65.5
LOCATION	POINT89	VOLUME		5403835 67.8
LOCATION	POINT90	VOLUME	320184 6	5403974 66.9
LOCATION	POINT91	VOLUME	320010 6	5404061 66.1
LOCATION	POINT92	VOLUME	319820 6	5404127 63.0
LOCATION	POINT93	VOLUME	319543 6	5404214 59.1
LOCATION	POINT94	VOLUME	320775 6	5403464 80.2
LOCATION	POINT95	VOLUME	320971 6	5403515 78.4
LOCATION	POINT96	VOLUME	321124 6	5403486 81.7
LOCATION	POINT97	VOLUME	320920 6	5403726 78.0
LOCATION	POINT98	VOLUME	320687 6	5403661 72.0
LOCATION	POINT99	VOLUME	320541 6	5403872 70.2
LOCATION	POINT100	VOLUME	319929	6404178 66.6
LOCATION	POINT101	VOLUME	319696	6404069 61.3
LOCATION	POINT102	VOLUME	319696	6404258 61.4
LOCATION	POINT103	VOLUME	319529	6404120 58.0
LOCATION	POINT104	VOLUME	319536	6404316 60.7
LOCATION	POINT105	VOLUME	319492	6404280 60.2
LOCATION	POINT106	VOLUME	319500	6404498 60.3
LOCATION	POINT107	VOLUME	319500	6404761 59.9
LOCATION	POINT108	VOLUME	319507	6404957 65.5
LOCATION	POINT109	VOLUME	319405	6405241 86.5
LOCATION	POINT110	VOLUME	319325	6405526 99.5
LOCATION	POINT111	VOLUME	319208	6405846 98.3
LOCATION	POINT112	VOLUME	319325	6405955 92.1
LOCATION	POINT113	VOLUME	319135	6406174 72.7
LOCATION	POINT114	VOLUME	318968	6406363 78.9
LOCATION	POINT115	VOLUME	318873	6406458 78.6
LOCATION	POINT116	VOLUME	318888	6406611 74.5
LOCATION	POINT117	VOLUME	318771	6406779 69.0
LOCATION	POINT118	VOLUME	318924	6406749 70.8
LOCATION	POINT119	VOLUME	319070	6406924 69.6
LOCATION	POINT120	VOLUME	319296	6406932 75.0
LOCATION	POINT121	VOLUME	318918	6406871 69.9
LOCATION	POINT122	VOLUME	319256	6406673 61.0
LOCATION	POINT123	VOLUME	319733	6403748 59.8
LOCATION	POINT124	VOLUME	319908	6403748 61.0
LOCATION	POINT125	VOLUME	320133	6403741 68.4
LOCATION	POINT126	VOLUME	320505	6403741 68.6
LOCATION	POINT127	VOLUME	319726	6403974 60.4
LOCATION	POINT128	VOLUME	319915	6403959 63.0
LOCATION	POINT129	VOLUME	320075	6403901 64.4
LOCATION	POINT130	VOLUME	320265	6403894 66.4
LOCATION	POINT131	VOLUME	319733	6403857 60.0
LOCATION	POINT132	VOLUME	319995	6403835 62.8
LOCATION	POINT133	VOLUME	320206	6403799 67.4
LOCATION	POINT134	VOLUME	320381	6403726 69.0
LOCATION	POINT135	VOLUME	320512	6403617 72.4
LOCATION	POINT136	VOLUME	320658	6403537 76.7
LOCATION	POINT137	VOLUME	320826	6403573 75.8
LOCATION	POINT138	VOLUME	320993	6403588 77.8
LOCATION	POINT139	VOLUME	320826	6403675 74.7
LOCATION	POINT140	VOLUME	320665	6403777 72.1
LOCATION	POINT141	VOLUME	320578	6403952 72.6
LOCATION	POINT142	VOLUME	320359	6404010 71.4
LOCATION	POINT143	VOLUME	320133	6404090 70.5
LOCATION	POINT144	VOLUME	321066	6403624 78.9


```
LOCATION POINT145
                      VOLUME
                              320804 6403777 75.5
                              320680 6403901 75.0
  LOCATION
            POINT146
                      VOLUME
            POINT147
                      VOLUME
                              320563 6404018 74.0
  LOCATION
  LOCATION
            POINT148
                      VOLUME
                              319842 6403886 61.2
  LOCATION
            POINT149
                      VOLUME
                              320141 6403850 65.5
                      VOLUME
  LOCATION
            POINT150
                              320403 6403835 67.8
  LOCATION
            POINT151
                      VOLUME
                              320184 6403974 66.9
  LOCATION
            POINT152
                      VOLUME
                              320010 6404061 66.1
                      VOLUME
                              319820 6404127 63.0
  LOCATION
            POINT153
  LOCATION
            POINT154
                      VOLUME
                              319543 6404214 59.1
  LOCATION
            POINT155
                      VOLUME
                              320775 6403464 80.2
            POINT156
                      VOLUME
                              320971 6403515 78.4
  LOCATION
  LOCATION
            POINT157
                      VOLUME
                              321124 6403486 81.7
            POINT158
                      VOLUME
                              320920 6403726 78.0
  LOCATION
  LOCATION
            POINT159
                      VOLUME
                              320687 6403661 72.0
            POINT160
                      VOLUME
                              320541 6403872 70.2
  LOCATION
  LOCATION
            POINT161
                      VOLUME
                              319929 6404178 66.6
                      VOLUME
                              319696 6404069 61.3
  LOCATION
            POINT162
                      VOLUME
  LOCATION
            POINT163
                              319696 6404258 61.4
  LOCATION
            POINT164
                      VOLUME
                              319529 6404120 58.0
  LOCATION
            POINT165
                      VOLUME
                              319536 6404316 60.7
                      VOLUME
                              319492 6404280 60.2
  LOCATION
            POINT166
                              319500 6404498 60.3
  LOCATION
            POINT167
                      VOLUME
  LOCATION
            POINT168
                      VOLUME
                              319500 6404761 59.9
  LOCATION
            POINT169
                      VOLUME
                              319507 6404957 65.5
  LOCATION
            POINT170
                      VOLUME
                              319405 6405241 86.5
  LOCATION
            POINT171
                      VOLUME
                              319325 6405526 99.5
  LOCATION
            POINT172
                      VOLUME
                              319208 6405846 98.3
  LOCATION
            POINT173
                      VOLUME
                              319325 6405955 92.1
  LOCATION
            POINT174
                      VOLUME
                              319135 6406174 72.7
            POINT175
                              318968 6406363 78.9
  LOCATION
                      VOLUME
  LOCATION
            POINT176
                      VOLUME
                              318873 6406458 78.6
  LOCATION
            POINT177
                      VOLUME
                              318888 6406611 74.5
                              318771 6406779 69.0
  LOCATION
            POINT178
                      VOLUME
  LOCATION
            POINT179
                      VOLUME
                              318924 6406749 70.8
                              319070 6406924 69.6
            POINT180
                      VOLUME
  LOCATION
  LOCATION
            POINT181
                      VOLUME
                              319296 6406932 75.0
                              318918 6406871 69.9
  LOCATION
            POINT182
                      VOLUME
  LOCATION POINT183
                      VOLUME
                              319256 6406673 61.0
** Point Source
                          RH IL
                     OS
                                   IV
** Parameters
                     ___
                              ___
  HOUREMIS
            C:\Jobs\Ashton2008\ISC\Year3\Model2\Y3emiss.dat POINT1-POINT183
  SRCPARAM
            POINT1 1.0 2.0 10.0 2.0
            POINT2 1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT3
                    1.0 2.0 10.0 2.0
  SRCPARAM
            POINT4
                    1.0 2.0 10.0 2.0
            POINT5 1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT6
                    1.0 2.0 10.0 2.0
            POINT7
                    1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT8 1.0 2.0 10.0 2.0
  SRCPARAM
            POINT9
                    1.0 2.0 10.0 2.0
  SRCPARAM
            POINT10 1.0 2.0 10.0 2.0
  SRCPARAM
            POINT11
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT12
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT13
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT14
                     1.0 2.0 10.0 2.0
                     1.0 2.0 10.0 2.0
            POINT15
  SRCPARAM
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT16
  SRCPARAM
            POINT17
                     1.0 2.0 10.0 2.0
            POINT18 1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT19
                     1.0 2.0 10.0 2.0
            POINT20
                     1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT21
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT22
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT23
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT24
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT25
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT26
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT27
                     1.0 2.0 10.0 2.0
            POINT28
                     1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POTNT29
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT30
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT31
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT32
                     1.0 2.0 10.0 2.0
  SRCPARAM
                     1.0 2.0 10.0 2.0
            POINT33
  SRCPARAM
            POINT34
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT35
                     1.0 2.0 10.0 2.0
  SRCPARAM
            POINT36
                     1.0 2.0 10.0 2.0
```


SRCPARAM		
	POINT37	1.0 2.0 10.0 2.0
SRCPARAM	POINT38	1.0 2.0 10.0 2.0
SRCPARAM	POINT39	1.0 2.0 10.0 2.0
SRCPARAM	POINT40	1.0 2.0 10.0 2.0
SRCPARAM	POINT41	1.0 2.0 10.0 2.0
SRCPARAM	POINT42	1.0 2.0 10.0 2.0
SRCPARAM	POINT43	1.0 2.0 10.0 2.0
SRCPARAM	POINT44	1.0 2.0 10.0 2.0
SRCPARAM	POINT45	1.0 2.0 10.0 2.0
SRCPARAM	POINT46	1.0 2.0 10.0 2.0
SRCPARAM	POINT47	1.0 2.0 10.0 2.0
SRCPARAM	POINT48	1.0 2.0 10.0 2.0
SRCPARAM	POINT49	1.0 2.0 10.0 2.0
SRCPARAM	POINT50	1.0 2.0 10.0 2.0
SRCPARAM	POINT51	1.0 2.0 10.0 2.0
SRCPARAM	POINT52	1.0 2.0 10.0 2.0
SRCPARAM	POINT53	1.0 2.0 10.0 2.0
SRCPARAM	POINT54	1.0 2.0 10.0 2.0
SRCPARAM	POINT55	1.0 2.0 10.0 2.0
SRCPARAM	POINT56	1.0 2.0 10.0 2.0
SRCPARAM	POINT57	1.0 2.0 10.0 2.0
SRCPARAM	POINT58	1.0 2.0 10.0 2.0
SRCPARAM	POINT59	1.0 2.0 10.0 2.0
SRCPARAM	POINT60	1.0 2.0 10.0 2.0
SRCPARAM	POINT61	1.0 2.0 10.0 2.0
SRCPARAM	POINT62	1.0 2.0 10.0 2.0
SRCPARAM	POINT63	1.0 2.0 10.0 2.0
SRCPARAM	POINT64	1.0 2.0 10.0 2.0
SRCPARAM	POINT65	1.0 2.0 10.0 2.0
SRCPARAM	POINT66	1.0 2.0 10.0 2.0
SRCPARAM	POINT67	1.0 2.0 10.0 2.0
SRCPARAM	POINT68	1.0 2.0 10.0 2.0
SRCPARAM	POINT69	1.0 2.0 10.0 2.0
SRCPARAM	POINT70	1.0 2.0 10.0 2.0
SRCPARAM	POINT71	1.0 2.0 10.0 2.0
SRCPARAM	POINT72	1.0 2.0 10.0 2.0
SRCPARAM	POINT73	1.0 2.0 10.0 2.0
SRCPARAM	POINT74	1.0 2.0 10.0 2.0
SRCPARAM	POINT75	1.0 2.0 10.0 2.0
SRCPARAM	POINT76	1.0 2.0 10.0 2.0
SRCPARAM	POINT77	1.0 2.0 10.0 2.0
SRCPARAM	POINT78	
SRCPARAM	POINT79	1.0 2.0 10.0 2.0
SRCPARAM	POINT80	1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM	POINT80 POINT81	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
		1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM	POINT81	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90 POINT91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90 POINT91 POINT92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90 POINT91 POINT92 POINT93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90 POINT91 POINT92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT89 POINT90 POINT91 POINT92 POINT93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT92 POINT94 POINT95 POINT96 POINT97	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT97	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT99	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT95 POINT95 POINT97 POINT97 POINT97 POINT99 POINT99	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT99	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT95 POINT95 POINT97 POINT97 POINT97 POINT99 POINT99	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT97 POINT99 POINT990 POINT100 POINT101 POINT101	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT91 POINT92 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT90 POINT100 POINT101 POINT101 POINT102	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT90 POINT100 POINT101 POINT1012 POINT1014 POINT104	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT90 POINT100 POINT100 POINT101 POINT102 POINT103 POINT104 POINT105 POINT106	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT100 POINT101 POINT101 POINT102 POINT104 POINT105 POINT105 POINT106	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT100 POINT101 POINT102 POINT103 POINT104 POINT105 POINT105 POINT107 POINT107	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT100 POINT101 POINT101 POINT102 POINT104 POINT105 POINT105 POINT106	$\begin{array}{c} 1.0 & 2.0 & 10.0 & 2.0 \\ 1.0 & 2.0 & 10$
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT94 POINT95 POINT96 POINT97 POINT98 POINT99 POINT100 POINT101 POINT102 POINT103 POINT104 POINT105 POINT105 POINT107 POINT107	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT89 POINT90 POINT91 POINT92 POINT93 POINT95 POINT96 POINT97 POINT99 POINT90 POINT100 POINT101 POINT102 POINT104 POINT105 POINT106 POINT106 POINT107 POINT107 POINT108 POINT109 POINT109	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT91 POINT92 POINT95 POINT96 POINT97 POINT97 POINT98 POINT90 POINT100 POINT101 POINT101 POINT102 POINT104 POINT105 POINT106 POINT107 POINT107 POINT108 POINT109 POINT101 POINT101 POINT101 POINT101 POINT101	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT92 POINT94 POINT95 POINT96 POINT97 POINT98 POINT90 POINT100 POINT101 POINT101 POINT102 POINT104 POINT105 POINT106 POINT107 POINT107 POINT108 POINT109 POINT101 POINT101 POINT101 POINT101 POINT101 POINT101 POINT101 POINT101 POINT101	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0
SRCPARAM	POINT81 POINT82 POINT83 POINT84 POINT85 POINT86 POINT87 POINT88 POINT90 POINT91 POINT91 POINT92 POINT95 POINT96 POINT97 POINT97 POINT98 POINT90 POINT100 POINT101 POINT101 POINT102 POINT104 POINT105 POINT106 POINT107 POINT107 POINT108 POINT109 POINT101 POINT101 POINT101 POINT101 POINT101	1.0 2.0 10.0 2.0 1.0 2.0 10.0 2.0


```
SRCPARAM POINT115 1.0 2.0 10.0 2.0
  SRCPARAM
            POINT116
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT117
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT118
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT119
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT120
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT121
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT122
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT123
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT124
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT125
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT126
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT127
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT128
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT129
                      1.0 2.0 10.0 2.0
            POINT130
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT131
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT132
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT133
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT134
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT135
                      1.0 2.0 10.0 2.0
            POINT136
  SRCPARAM
                      1.0 2.0 10.0 2.0
            POINT137
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT138
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT139
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT140
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT141
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT142
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT143
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT144
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT145
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT146
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT147
                      1.0 2.0 10.0 2.0
            POINT148
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT149
                      1.0 2.0 10.0 2.0
            POINT150
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT151
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT152
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT153
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT154
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT155
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT156
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT157
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT158
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT159
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT160
                      1.0 2.0 10.0 2.0
            POINT161
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT162
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT163
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT164
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT165
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT166
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT167
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT168
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT169
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT170
                      1.0 2.0 10.0 2.0
            POINT171
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT172
  SRCPARAM
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT173
                      1.0 2.0 10.0 2.0
            POINT174
                      1.0 2.0 10.0 2.0
  SRCPARAM
  SRCPARAM
            POINT175
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT176
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT177
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT178
                      1.0 2.0 10.0 2.0
            POINT179
  SRCPARAM
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT180
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT181
                      1.0 2.0 10.0 2.0
  SRCPARAM
            POINT182
                      1.0 2.0 10.0 2.0
                      1.0 2.0 10.0 2.0
            POINT183
  SRCPARAM
            POINT1-POINT61 1.0
  PARTDIAM
            POINT62-POINT122
  PARTDIAM
                              5.0
            POINT123-POINT183 17.3
  PARTDIAM
  MASSFRAX
            POINT1-POINT183 1.0
  PARTDENS
            POINT1-POINT183
                             2.5
  SRCGROUP
            FP POINT1-POINT61
  SRCGROUP
            CM POINT62-POINT122
  SRCGROUP
            REST POINT123-POINT183
SO FINISHED
```



```
RE STARTING
RE DISCCART 319858.9852 6404536.157 66.61398475
RE DISCCART 320371.935 6404755.991 77.98286786
RE DISCCART 320347.509 6404560.583 83.56911952
RE DISCCART 320249.805 6404291.894 77.5164467
RE DISCCART 319736.8552 6404389.598 63.08017143
RE DISCCART 319492.5913 6404267.468 62.25982686
RE DISCCART 319687.9993 6403803.37 60.87255009
RE DISCCART 320078.8192 6403974.352 66.97101786
RE DISCCART 320445.2168 6403949.926 70.23614999
RE DISCCART 321007.0187 6404096.486 99.58742334
RE DISCCART 320836.0367 6403827.796 78.44661692
RE DISCCART 321178.0045 6403656.81 86.3964519
RE DISCCART 320884.8887 6403559.106 77.54332858
RE DISCCART 320542.9208 6403461.402 79.05914104
RE DISCCART 320225.379 6403534.68 76.15252015
RE DISCCART 320005.5412 6403656.81 65.77060387
RE DISCCART 319761.2812 6403559.106 60.5057069
RE DISCCART 319932.2632 6403290.416 65.33071126
RE DISCCART 319761.2812 6403095.008 60.88698394
RE DISCCART 320249.805 6403339.268 71.73585959
RE DISCCART 320494.0688 6403119.434 76.12716487
RE DISCCART 320494.0688 6402801.892 87.59755319
RE DISCCART 320127.675 6402972.874 77.22786088
RE DISCCART 319981.1152 6402850.744 77.76296402
RE DISCCART 320933.7407 6403119.434 91.70064839
RE DISCCART 321153.5747 6403925.5 97.82067885
RE DISCCART 319858.9852 6402508.776 68.60205178
RE DISCCART 320152.101 6402582.054 83.12896442
RE DISCCART 320567.3468 6402533.202 91.72955651
RE DISCCART 320909.3147 6402533.202 105.4377757
RE DISCCART 320762.7548 6402264.513 97.8370118
RE DISCCART 320396.361 6402288.942 77.07799548
RE DISCCART 319956.6892 6402264.513 68.5553822
RE DISCCART 319565.8693 6402362.22 58.80647117
RE DISCCART 319614.7213 6402704.188 57.69292825
RE DISCCART 319297.1795 6402679.762 59.60095691
RE DISCCART 319492.5913 6403070.582 57.31554368
RE DISCCART 319175.0495 6402948.448 62.66928588
RE DISCCART 319321.6055 6403290.416 54.95567928
RE DISCCART 319517.0173 6403632.384 57.78733705
RE DISCCART 319077.3455 6403461.402 73.05966766
RE DISCCART 319419.3133 6403949.926 59.81179016
RE DISCCART 319077.3455 6404072.056 78.35215771
RE DISCCART 319028.4935 6403803.37 71.58586417
RE DISCCART 319223.9015 6404365.172 70.03333374
RE DISCCART 319321.6055 6404707.139 73.17965265
RE DISCCART 319810.1332 6404804.843 61.36678731
RE DISCCART 319687.9993 6405073.533 61.22383479
RE DISCCART 319199.4755 6405049.107 97.80995496
RE DISCCART 319126.1975 6405366.649 92.00647621
RE DISCCART 319468.1653 6405513.205 90.11028747
RE DISCCART 319370.4613 6405781.895 103.4578737
RE DISCCART 319028.4935 6405659.765 91.50382204
RE DISCCART 319004.0675 6406123.863 83.74660506
RE DISCCART 319736.8552 6405317.797 68.17878346
RE DISCCART 319981.1152 6405122.385 62.25195137
RE DISCCART 320054.3932 6405439.927 64.3462667
RE DISCCART 319736.8552 6405635.339 79.72069585
RE DISCCART 319883.4112 6405855.173 77.91922967
RE DISCCART 319614.7213 6405977.307 101.0675047
RE DISCCART 319590.2953 6406197.141 99.35368248
RE DISCCART 319272.7535 6406245.993 90.42551699
RE DISCCART 319541.4433 6406490.257 91.3993099
RE DISCCART 319370.4613 6406783.372 80.18137623
RE DISCCART 319150.6235 6406636.816 77.27222321
RE DISCCART 319126.1975 6406905.502 72.47944795
RE DISCCART 318833.0817 6406807.798 69.08330389
RE DISCCART 318491.1138 6406954.354 68.13755532
RE DISCOART 318588,8178 6406563,535 70,52463686
RE DISCCART 318881.9337 6406416.979 80.00161073
RE DISCCART 318710.9517 6406075.011 84.71604366
RE DISCCART 318466.6878 6406343.701 68.25666361
RE DISCCART 318320.1318 6406636.816 66.80115053
RE DISCCART 318588.8178 6405659.765 77.44069743
RE DISCCART 318857.5077 6405366.649 84.16882241
RE DISCCART 318979.6377 6404951.403 90.42949023
```



```
RE DISCCART 319004.0675 6404585.009 104.8670768
RE DISCCART 318833.0817 6404243.042 94.39548252
RE DISCCART 320982.5927 6402801.892 95.26484141
RE DISCCART 321251.2825 6402655.336 109.5763993
RE DISCCART 321300.1345 6403119.434 116.2018686
RE DISCCART 321495.5425 6403436.976 105.1033851
RE DISCCART 321544.3983 6403803.37 108.2230196
RE DISCCART 321324.5605 6404267.468 87.14098257
RE DISCCART 320933.7407 6404731.565 70.11670174
RE DISCCART 320982.5927 6404389.598 91.0191735
RE DISCCART 321153.5747 6404951.403 67.35655157
RE DISCCART 321446.6905 6404585.009 69.68101168
RE DISCCART 321642.1023 6404169.764 91.87761769
RE DISCCART 321764.2323 6403632.384 101.7689162
RE DISCCART 321861.9363 6403143.86 114.8697806
RE DISCCART 321666.5283 6402875.17 147.2337631
RE DISCCART 321642.1023 6402386.646 143.1436534
RE DISCCART 321226.8565 6402240.087 127.2767608
RE DISCCART 320836.0367 6402020.253 104.2964534
RE DISCCART 320225.379 6401995.827 84.67698258
RE DISCCART 319614.7213 6401971.401 66.13689879
RE DISCCART 319175.0495 6402166.809 56.31051751
RE DISCCART 318979.6377 6402557.628 59.49605545
RE DISCCART 318857.5077 6403021.73 81.2536371
RE DISCCART 318735.3777 6403534.68 96.09075749
RE DISCCART 318808.6557 6404047.63 94.47311836
RE DISCCART 318515.5398 6404340.746 78.45330219
RE DISCCART 318662.0997 6404829.273 90.02778973
RE DISCCART 318613.2438 6405171.241 78.25190923
RE DISCCART 319663.5733 6407076.488 78.88119861
RE DISCCART 319736.8552 6406661.242 99.40490586
RE DISCCART 319175.0495 6407174.192 75.70506936
RE DISCCART 318833.0817 6407100.914 71.51403767
RE DISCCART 320958.1667 6405146.811 66.61720003
RE DISCCART 320860.4627 6405488.779 78.7869998
RE DISCCART 321178.0045 6405268.945 66.99631722
RE DISCCART 320836.0367 6405268.945 76.07064772
RE DISCCART 320982.5927 6406001.733 65.04115228
RE DISCCART 321471.1165 6405879.599 76.53183466
RE DISCCART 321178.0045 6405659.765 65.00863763
RE DISCCART 321544.3983 6405391.075 80.91616726
RE DISCCART 321959.6442 6405049.107 77.88328653
RE DISCCART 322130.6262 6404585.009 66.75380079
RE DISCCART 321764.2323 6404804.843 68.88374542
RE DISCCART 321910.7922 6405415.501 102.3496065
RE DISCCART 321788.6583 6405781.895 97.09212332
RE DISCCART 321739.8063 6406270.423 89.23834498
RE DISCCART 321324.5605 6406392.553 99.15938342
RE DISCCART 320836.0367 6406368.127 101.9819313
RE DISCCART 320494.0688 6406490.257 107.6723142
RE DISCCART 322203.9042 6403461.402 110.0654969
RE DISCCART 322326.038 6403046.156 113.8663703
RE DISCCART 322106.2002 6402142.383 164.2638407
RE DISCCART 321519.9685 6401409.595 99.96219046
RE DISCCART 320469.6428 6401385.169 77.95405093
RE DISCCART 319321.6055 6401311.891 80.23221646
RE DISCCART 319443.7393 6400603.529 79.85254655
RE DISCCART 320347.509 6400627.955 108.7302975
RE DISCCART 321348.9865 6400627.955 102.4288287
RE DISCCART 321495.5425 6399626.478 111.4900825
RE DISCCART 320445.2168 6399553.2 106.8619776
RE DISCCART 319541.4433 6399650.904 79.65228386
RE DISCCART 319785.7072 6398454.018 87.2663844
RE DISCCART 320933.7407 6398478.444 118.24176
RE DISCCART 321910.7922 6398502.87 91.19105981
RE DISCCART 321837.5103 6397330.411 61.78746077
RE DISCCART 320909.3147 6397403.689 78.77963419
RE DISCCART 319736.8552 6397452.541 73.71171334
RE DISCCART 318417.8358 6397452.541 67.78602121
RE DISCCART 317074.3905 6397452.541 52.86929807
RE DISCCART 315633, 2412, 6397354, 837, 59, 43949033
RE DISCCART 314143.2398 6397428.115 71.30677389
RE DISCCART 312653.2385 6397354.837 88.7956182
RE DISCCART 310772.4173 6397403.689 131.03863
RE DISCCART 310747.9913 6398698.282 98.47201095
RE DISCCART 310967.8253 6400530.251 63.70311887
RE DISCCART 310845.6953 6402288.942 72.37904082
RE DISCCART 310992.2513 6403730.092 107.347819
```



```
RE DISCCART 310894.5473 6405513.205 136.1738658
RE DISCCART 310577.0055 6407467.308 126.1856395
RE DISCCART 310747.9913 6408737.472 116.9336863
RE DISCCART 310747.9913 6411277.802 114.645251
RE DISCCART 310454.8755 6413891.415 173.7436972
RE DISCCART 312335.6967 6414306.661 98.937115
RE DISCCART 311651.761 6412938.79 131.0871168
RE DISCCART 314021.1098 6412328.132 92.24035513
RE DISCCART 312384.5487 6412108.298 157.4800588
RE DISCCART 312067.0068 6409934.361 145.3300599
RE DISCCART 314240.9438 6410422.885 81.11102536
RE DISCCART 313337.1742 6408761.898 116.0247855
RE DISCCART 312335.6967 6407491.734 98.50177639
RE DISCCART 313996.6838 6406319.275 70.42463241
RE DISCCART 312189.1407 6405904.029 86
RE DISCCART 312335.6967 6403290.416 70.79951913
RE DISCCART 314485.2077 6403681.236 64.50596132
RE DISCCART 313068.4843 6404511.731 71.00754474
RE DISCCART 315169.1433 6401629.433 85.91792398
RE DISCCART 313239.4702 6401238.613 90.74185647
RE DISCCART 312824.2205 6399382.218 79.06930294
RE DISCCART 315071.4393 6398869.264 100.1133356
RE DISCCART 315853.079 6400579.103 109.9779907
RE DISCCART 316707.9967 6398966.968 60.08588219
RE DISCCART 318222.424 6398698.282 55.86688281
RE DISCCART 318491.1138 6400383.691 71.81860548
RE DISCCART 316878.9825 6401018.775 80.24538445
RE DISCCART 318027.016 6402093.531 66.44012628
RE DISCCART 316463.7367 6402240.087 111.6251002
RE DISCCART 318320.1318 6403949.926 84.23692974
RE DISCCART 316512.5887 6403559.106 68.85447825
RE DISCCART 315315.6993 6404462.879 75.68474904
RE DISCCART 317269.8023 6405586.487 62.47285247
RE DISCCART 317245.3763 6407271.896 88.66610347
RE DISCCART 315608.8152 6406221.567 81.31404532
RE DISCCART 315266.8473 6407858.128 101.3155198
RE DISCCART 317098.8165 6408884.031 91.73988753
RE DISCCART 315657.6672 6409665.671 108.4313337
RE DISCCART 316072.913 6411522.066 94.76813642
RE DISCCART 318051.442 6410764.853 96.10851136
RE DISCCART 318539.9658 6409055.013 78.66703742
RE DISCCART 319785.7072 6407662.716 109.861971
RE DISCCART 321422.2645 6407980.258 86.3092227
RE DISCCART 320738.3288 6409519.111 96.49843481
RE DISCCART 319736.8552 6411009.116 69.71396243
RE DISCCART 320249.805 6412963.216 105.2751515
RE DISCCART 318197.998 6413451.739 110.245549
RE DISCCART 317025.5385 6412547.97 115.8479024
RE DISCCART 315657.6672 6414282.235 110.3034861
RE DISCCART 314705.0455 6413696.003 102.1988106
RE DISCCART 319761.2812 6414282.235 125.6798096
RE DISCCART 321446.6905 6414282.235 140.4102057
RE DISCCART 321935.2182 6412718.952 123.9213659
RE DISCCART 321055.8707 6411741.904 117.3472776
RE DISCCART 323693.9055 6410129.769 93.79040219
RE DISCCART 322692.4318 6410911.409 125.336467
RE DISCCART 324084.7292 6413354.035 159.3954469
RE DISCCART 323351.9415 6412181.576 145.1975821
RE DISCCART 323449.6455 6414355.513 166.4941839
RE DISCCART 325965.5503 6414355.513 210.6876439
RE DISCCART 327089.1578 6414477.643 136.807039
RE DISCCART 324841.9428 6414086.823 262.7767895
RE DISCCART 326625.06 6412889.938 198.1292798
RE DISCCART 325867.8425 6412059.446 132.8314828
RE DISCCART 326942.598 6410886.983 166.5822927
RE DISCCART 325183.9107 6410618.297 108.7485924
RE DISCCART 324304.5632 6409396.981 101.0285206
RE DISCCART 322545.872 6408957.309 83.82514791
RE DISCCART 325281.6147 6407394.03 95.11074031
RE DISCCART 327064.7318 6406832.224 95.90338469
RE DISCCART 325843.4165 6406197.141 108.1089952
RE DISCCART 324426.6932 6405806.321 34.66827515
RE DISCCART 325525.8785 6404731.565 99.39459216
RE DISCCART 327186.8618 6404096.486 117.8504981
RE DISCCART 325183.9107 6403436.976 114.1559658
RE DISCCART 323229.8077 6403656.81 79.78508275
RE DISCCART 324353.4152 6404707.139 88.52608104
RE DISCCART 322961.1178 6405635.339 69.81318292
```



```
RE DISCCART 324206.8592 6402899.596 91.1153851
RE DISCCART 326136.5323 6402826.318 119.818594
RE DISCCART 327186.8618 6401507.299 132.6095268
RE DISCCART 325452.5967 6400847.793 118.4546326
RE DISCCART 323742.7613 6401800.415 115.5060358
RE DISCCART 322448.168 6401238.613 105.5535057
RE DISCCART 323083.2517 6399992.872 127.1650509
RE DISCCART 324231.2852 6399162.38 80.72301202
RE DISCCART 323547.3495 6398673.856 86.2348565
RE DISCCART 325086.2028 6397892.213 84.1807124
RE DISCCART 326649.486 6397476.967 85.62895205
RE DISCCART 326869.32 6399284.51 86.88219831
RE DISCCART 325135.0548 6402166.809 119.9577491
RE DISCCART 327260.1398 6397696.805 68.62444705
RE DISCCART 313166.1883 6410325.181 94.8443417
RE DISCCART 312384.5487 6408932.883 101.4312911
RE DISCCART 312042.5808 6411033.542 101.7912168
RE DISCCART 315169.1433 6411204.524 123.0996899
RE DISCCART 318930.7857 6412499.118 120.8445918
RE DISCCART 317636.1962 6414550.921 109.2667179
RE DISCCART 320347.509 6408786.324 104.6845417
RE DISCCART 313972.2578 6400334.839 74.93027892
RE DISCCART 314656.1935 6409299.277 78.16967017
RE DISCCART 324158.0072 6401116.479 87.37103933
RE DISCCART 313532.5822 6402753.04 61.89634291
RE DISCCART 313483.7302 6407735.998 83.11781776
RE DISCCART 311993.7288 6404804.843 103.5182114
RE DISCCART 312164.7147 6402044.679 58.01038029
RE DISCCART 312115.8627 6400115.005 68.70071206
RE DISCCART 311554.057 6408346.652 118.486414
RE DISCCART 316610.2927 6410545.015 102.6662306
RE DISCCART 319370.4613 6409958.787 86.68722182
RE DISCCART 315266.8473 6413085.346 119.4374737
RE DISCCART 322545.872 6413720.429 144.0547501
RE DISCCART 321739.8063 6410813.705 103.4937729
RE DISCCART 318613.2438 6408077.966 78.21132711
RE DISCCART 324402.2672 6411546.492 104.2030696
RE DISCCART 310015.2037 6414990.597 128
RE DISCCART 327602.1077 6414990.597 151.8408311
RE DISCCART 327602.1077 6396988.443 50.44556974
RE DISCCART 309990.7777 6396988.443 151.4561189
RE DISCCART 320642.0517 6405021.407 91.11600401
RE DISCCART 320628.4683 6405120.063 90.32470241
RE DISCCART 320608.1123 6405123.397 90.01760089
RE DISCCART 320625.0928 6405196.188 92.54066475
RE DISCCART 320572.8195 6405204.967 91.68939243
RE DISCCART 320567.4002 6405130.064 89.28000267
RE DISCCART 320543.8896 6405133.339 88.67294121
RE DISCCART 320519.7874 6405136.617 88.0482222
RE DISCCART 320552.0698 6405311.91 93.40207364
RE DISCCART 320466.2778 6405310.314 90.60367301
RE DISCCART 320448.3213 6405224.919 86.09193595
RE DISCCART 320367.7167 6405326.276 79.83170439
RE DISCCART 320476.6571 6405447.518 88.01112937
RE DISCCART 320332.5883 6405527.855 69.71559584
RE DISCCART 320563.3657 6405642.485 78.54033198
RE DISCCART 320610.1291 6405701.775 78.09209073
RE DISCCART 320622.8981 6405796.747 70.47115182
RE DISCCART 320536.8094 6405813.311 69.23593769
RE DISCCART 320519.3983 6405646.289 77.20178534
RE DISCCART 320442.9344 6405684.616 72.28159741
RE DISCCART 320407.5378 6405672.641 70.61021104
RE DISCCART 320386.6476 6405672.978 69.39932986
RE DISCCART 320361.9307 6405737.289 68.46598768
RE DISCCART 320370.7094 6405772.804 68.72934175
RE DISCCART 320373.9017 6405806.324 68.82510823
RE DISCCART 320230.2499 6405694.592 64.24113864
RE DISCCART 320269.3551 6405816.699 65.62364121
RE DISCCART 320717.8068 6405887.33 67.0344544
RE DISCCART 320659.7206 6405878.878 67.54713977
RE DISCOART 320645,244 6406080,865 63,01046181
RE DISCCART 320584.591 6406043.355 63.98615489
RE DISCCART 320398.0119 6405970.06 65.08284903
RE DISCCART 320428.0911 6405907.319 66.55114424
RE DISCCART 320394.2559 6405910.874 66.78669747
RE DISCCART 320392.0501 6405944.389 65.84418142
RE DISCCART 320325.8653 6405919.227 65.71627802
RE DISCCART 320330.1479 6405994.409 64.28299743
```



```
RE DISCCART 320187.9412 6405956.708 63.60002079
RE DISCCART 320418.1068 6404951.043 78.27587807
RE DISCCART 320416.9972 6405004.647 80.10561277
RE DISCCART 320280.0352 6404996.45 72.25547175
RE DISCCART 329661.8981 6408431.577 111.4655918
RE DISCCART 329813.7749 6408847.426 103.2553979
RE DISCCART 320284.3608 6405119.919 71.38014859
RE DISCCART 320202.1742 6405086.77 69.05726934
RE DISCCART 320195.9343 6404988.267 70.38933766
RE DISCCART 320460.8908 6405797.545 70.0777077
RE DISCCART 328948.9125 6407260.006 100.043648
RE DISCCART 329433.5299 6407000.509 120.822484
RE DISCCART 328521.8497 6406158.981 105.1434892
RE DISCCART 328700.1341 6406547.557 118.0490471
RE DISCCART 329073.1408 6407055.644 106.4406351
RE DISCCART 329951.5414 6406739.377 137.1027295
RE DISCCART 324549.1391 6408691.692 114.544422
RE DISCCART 324702.6 6408777.5 110.874793
RE DISCCART 324678 6408968.9 116.1162861
RE DISCCART 324970.6 6408808.3 85.06865734
RE DISCCART 324814.2908 6409363.932 120.2041276
RE DISCCART 324841.5778 6409153.874 104.8961112
RE DISCCART 325600.1036 6409047.59 86.86907141
RE DISCCART 325671.0329 6410067.64 131.1575566
RE DISCCART 325389.6372 6409818.45 119.0279241
RE DISCCART 325665.3254 6409874.158 131.9048553
RE DISCCART 325759.8947 6409619.75 116.7791124
RE DISCCART 326501.5881 6408274.773 81.05359592
RE DISCCART 326122.5247 6408188.993 78.94477478
RE DISCCART 326015.5014 6408283.963 78.52069227
RE DISCCART 326269.607 6409345.801 96.00310902
RE DISCCART 326337.0426 6409235.784 94.25690491
RE DISCCART 326288.4932 6409091.855 98.41631745
RE DISCCART 325974.4803 6409606.557 113.2054868
RE DISCCART 326144.5276 6409851.847 106.9181698
RE DISCCART 325887 6410028.2 123.4464619
RE DISCCART 321928 6409715.8 99.92842076
RE DISCCART 325187.3316 6409967.812 134.2176469
RE DISCCART 325594.2161 6410044.98 130.9597826
RE DISCCART 325365.0794 6410080.557 137.8510422
RE DISCCART 323690.5881 6405348.333 94.24914062
RE DISCCART 321897.9799 6404243.859 97.62994894
RE DISCCART 322118.5234 6404277.348 74.37001723
RE DISCCART 322178 6403920 89.07957538
RE DISCCART 328402.5418 6405154.333 122.4139065
RE DISCCART 328099.4664 6404703.874 118.9144487
RE DISCCART 328290.4899 6404221.74 126.3548773
RE DISCCART 328014.4985 6404085.201 113.4606661
RE DISCCART 327976.4799 6403919.953 111.0744708
RE DISCCART 327916.4918 6403748.332 112.5950356
RE DISCCART 327919.102 6403583.043 118.7548589
RE DISCCART 328091.6457 6403308.518 130.8667746
RE DISCCART 328673.214 6404208.651 138.8657813
RE DISCCART 328656.8528 6403854.518 133.8015211
RE DISCCART 328803.5115 6403222.067 152.2081692
RE DISCCART 323836.8497 6407879.126 92.19543754
RE DISCCART 324203.6594 6408195.012 105.5846162
RE DISCCART 324416.3368 6408394.225 113.7575213
RE DISCCART 324421 6408470 117.8935781
RE DISCCART 323284.4699 6407999.928 80.05263506
RE DISCCART 323404.8395 6407862.631 80.8868884
RE DISCCART 328232.745 6402938.108 136.761417
RE DISCCART 327967.722 6401986.22 141.7325555
RE DISCCART 328301.4227 6402602.219 145.6941011
RE DISCCART 327960.7545 6401847.227 141.4264113
RE DISCCART 327903.8905 6401609.239 141.0825961
RE DISCCART 322138 6405854 80.13706904
RE DISCCART 321519.8 6405033.2 81.49874959
RE DISCCART 319988.8881 6406304.556 114.3810594
RE DISCCART 320987.8162 6405748.806 71.32260342
RE DISCCART 320745,0022 6405050,936 88,68635055
RE DISCCART 320760.8247 6404893.309 86.31125013
RE DISCCART 321122.3347 6404551.51 75.03663614
RE DISCCART 321417.2 6404001.2 116.894323
RE DISCCART 320655.6719 6404437.038 86.27799179
RE DISCCART 320130.8907 6404738.885 72.82364615
RE DISCCART 319986.0949 6404251.483 70.05506381
RE DISCCART 320624.1788 6404173.181 85.08534687
```



```
RE DISCCART 319720.1396 6404124.188 62.96952049
RE DISCCART 320450.3695 6403685.242 70.20907778
RE DISCCART 319622.729 6403376.022 61.89008331
RE DISCCART 319022.6303 6403128.578 89.61884743
RE DISCCART 319158.9 6401741.905 68.84185346
RE DISCCART 318672.1765 6399372.164 72.29256625
RE DISCCART 318783.9057 6399349.817 79.22395928
RE DISCCART 318889.2504 6399321.086 81.87185484
RE DISCCART 318104.7519 6399595.627 68.27212312
RE DISCCART 317991.4266 6399396.106 70.22153397
RE DISCCART 318253.1921 6399367.375 72.5140155
RE DISCCART 318779.9154 6399215.739 81.85561129
RE DISCCART 318676.1669 6399197.383 75.69231836
RE DISCCART 318741.6082 6399235.691 79.26151716
RE DISCCART 318807.0496 6399079.266 76.56721037
RE DISCCART 320040 6405606 62.45693324
RE DISCCART 313691.7 6403991.7 89.04999356
RE DISCCART 321981.1558 6406667.457 80.8225076
RE DISCCART 322002.6945 6406793.099 78.30997507
RE DISCCART 321537.4662 6406522.5 89.97054095
RE DISCCART 321424.5092 6406444.297 95.04474631
RE DISCCART 323124.15 6407374.375 74.14836945
RE DISCCART 323212.1773 6407709.445 75.68839869
RE DISCCART 322859.7542 6407718.385 75.82590878
RE DISCCART 323477.2257 6404983.9 78.99366701
RE DISCCART 323247.1927 6404600.094 80.42477805
RE DISCCART 323057.6645 6404313.368 74.75616077
RE DISCCART 324484.8652 6408518.545 117.4398085
RE DISCCART 323491.6305 6406829.93 82.1642485
RE DISCCART 324031.3257 6407105.15 77.93028126
RE DISCCART 321824.8 6404485.6 76.72913862
RE DISCCART 324467 6407668 76.38843065
RE DISCCART 325054.7101 6408134.039 78.5593415
RE DISCCART 325370.982 6408508.897 78.99821406
RE DISCCART 325944.9392 6407969.265 91.09175175
RE DISCCART 326078.6935 6407793.164 105.7302843
RE DISCCART 326370.7 6407485.8 119.4336371
RE DISCCART 327236.6106 6408319.267 83.98375591
RE DISCCART 327025.1 6409078 88.63778299
RE DISCCART 327862.6994 6408147.905 104.7884534
RE DISCCART 328270.6668 6408086.188 102.0299463
RE DISCCART 328696.0608 6408352.728 115.930157
RE DISCCART 329158.7578 6408740.084 129.427797
RE DISCCART 329053.6059 6408449.989 113.2831668
RE DISCCART 329175.1987 6407982.747 104.5272179
RE DISCCART 329385.5456 6408280.769 104.3916485
RE DISCCART 327632.338 6401714.765 149.45338
RE DISCCART 316816 6403292.9 81.5498359
RE DISCCART 314988.1 6402368.7 78.14719771
RE DISCCART 317758.2949 6402122.592 98.58837911
RE DISCCART 319460.6653 6399193.393 102.2721128
RE DISCCART 317897.2549 6399180.623 66.25722672
RE DISCCART 318067.1 6400189.2 61.55736074
RE DISCCART 317991.6 6399964.8 63.25905023
RE DISCCART 317973.2 6399822 65.44694434
RE DISCCART 315923.9 6403033.4 93.79324143
RE DISCCART 317206 6409079.1 80.85730396
RE DISCCART 317274.2 6409071 77.09937678
RE DISCCART 317305 6409034.7 77.10739848
RE DISCCART 317763 6410629 86.93203672
RE DISCCART 317836 6410828 94.68628766
RE DISCCART 318030 6411960 98.78743969
RE DISCCART 316796 6413303 109.2737742
RE DISCCART 322480.3 6410161.2 108.1394413
RE DISCCART 324545 6410331 110.2185874
RE DISCCART 324578 6410566 98.56232657
RE DISCCART 324736 6411314 102.3643938
RE DISCCART 324547 6411471 102.6518385
RE DISCCART 324751 6411695 123.4320975
RE DISCCART 326977.4 6409945.6 94.47011186
RE DISCCART 327569.0113 6409126.357 89.27666133
RE DISCCART 327964.8518 6409104.01 112.2345012
RE DISCCART 327581.7803 6409582.861 101.1677018
RE DISCCART 327735.0089 6409608.4 90.35773466
RE DISCCART 327722.2399 6409736.094 95.28754003
RE DISCCART 327632.8565 6410253.253 100.2315507
RE DISCCART 327879.4588 6401392.116 132.7630433
RE DISCCART 327742.1915 6401098.421 116.6254635
```



```
RE DISCCART 327620.8855 6401060.113 114.7912243
RE DISCCART 327750.1721 6400973.92 108.9640542
RE DISCCART 327614.501 6400980.305 112.9611753
RE DISCCART 327579.3861 6400874.957 107.0017791
RE DISCCART 327566.6171 6400775.995 100.9008724
RE DISCCART 327366.3 6400677.1 104.8203509
RE DISCCART 327493.2 6400507 106.7437616
RE DISCCART 325617.9 6399742.7 91.69031939
RE DISCCART 323977.4 6400290.9 96.28769251
RE DISCCART 325665.4 6398722.7 116.631723
RE DISCCART 325571.5 6399501.6 93.2668484
RE DISCCART 320252.2 6405961.9 64.19067823
RE DISCCART 320255.9 6405176.8 71.32717929
RE DISCCART 322122.3 6405905.8 84.66615068
RE DISCCART 322009 6406832.8 77.68730793
RE DISCCART 317998.3 6407424.7 71.73921326
RE DISCCART 320763.3 6405768.5 73.32923304
RE FINISHED
ME STARTING
  10 METERS
  ANEMHGHT
            99999 2007
  SURFDATA
  UAIRDATA 99999 2007
ME FINISHED
OU STARTING
  RECTABLE
            ALLAVE FIRST-SECOND
  MAXTABLE
            ALLAVE 50
  PLOTFILE
            24 FP FIRST
                        C:\Jobs\Ashton2008\ISC\Year3\Model2\FP1D.PLO
            24 CM FIRST C:\Jobs\Ashton2008\ISC\Year3\Model2\CM1D.PLO
  PLOTFILE
  PLOTFILE
            24 REST FIRST C:\Jobs\Ashton2008\ISC\Year3\Model2\RE1D.PLO
  PLOTFILE
            PERIOD FP C:\Jobs\Ashton2008\ISC\Year3\Model2\FP1Y.PLO
  PLOTFILE PERIOD CM C:\Jobs\Ashton2008\ISC\Year3\Model2\CM1Y.PLO
  PLOTFILE
            PERIOD REST C:\Jobs\Ashton2008\ISC\Year3\Model2\RE1Y.PLO
OU FINISHED
```


Appendix : Emission calculations

Ashton Coal South East Open Cut Emissions Inventory

Description of operations

The dust emission inventories have been prepared using the operational description of the proposed mining activities provided by ACOL.

Topsoil would be removed using a scraper followed by blasting to fragment the waste rock prior to excavation using loaders and trucks. Following removal of the waste rock, the exposed coal would be cleaned using a dozer and/or grader. The coal seam would then be ripped, loaded into haul trucks using an excavator or front-end-loader (FEL) and transported either directly or via a temporary ROM stockpile to the existing Coal Handling Preparation Plant (CHPP) at Ashton North East Open Cut via conveyor.

The waste rock would be hauled for placement out-of-pit.

Emission estimates

Estimated emissions are presented for all significant dust generating activities associated with the operations. The relevant emission factors used for the study are described below.

All activities have been modelled for 24 hours per day, with the exception of topsoil removal, drilling of overburden, and grading, which have been assumed to occur between the hours of 7am and 7pm, and the blasting of overburden, which has been assumed to occur between the hours of 9am and 5pm only.

Dust from wind erosion is assumed to occur over 24 hours per day, however, wind erosion is also assumed to be proportional to the third power of wind speed. This will mean that most wind erosion occurs in the day when wind speeds are highest.

Removal of topsoil

The TSP emission factor for removal of topsoil is 14 kg/h (SPCC, 1983) was applied.

Drilling overburden

The emission factor used for drilling has been taken to be 0.59 kg/hole (**US EPA, 1985 and updates**).

The number of holes per year were calculated based on information provided by ACOL.

Blasting overburden

TSP emissions from blasting were estimated using the **US EPA (1985 and updates)** emission factor equation given in **Equation 1**.

Equation 1

$$E_{TSP} = 0.00022 \times A^{1.5}$$
 kg/blast

where,

A = area to be blasted in m²

The area to be blasted per blast and number of blasts per year were calculated based on information provided by ACOL.

Loading material / dumping topsoil and overburden using shovels/excavators/FELs

Each tonne of material loaded will generate a quantity of TSP that will depend on the wind speed and the moisture content. **Equation 2** shows the relationship between these variables.

Equation 2

$$E_{TSP} = k \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \right)$$
 kg/t

where.

 $E_{TSP} = TSP$ emissions

k = 0.74

U = wind speed(m/s)

M = moisture content (%)

[where $0.25 \le M \le 4.8$]

The wind speed value was taken from the Repeater Station 2007/2008 meteorological dataset. The moisture content for overburden was assumed to be 4% for topsoil and 2% for overburden.

Hauling material / product on unsealed surfaces

After the application of water, the emission factor used for trucks hauling waste rock or ROM coal on unsealed surfaces is 1 kg per vehicle kilometre travelled (kg/VKT).

The return trip for each year was measured from the location of the haul routes. It was assumed haul trucks with an average capacity of between 171 t and 192 t are used for the hauling of overburden. For ROM coal the average truck capacity was assumed to be 195 t.

Dozers on overburden

Emissions from dozers on overburden have been calculated using the US EPA emission factor equation (**US EPA, 1985 and updates**), per **Equation 3**.

Equation 3

$$E_{TSP} = 2.6 \times \frac{s^{1.2}}{M^{1.3}}$$
 kg/hour

where,

 $E_{TSP} = TSP \ emissions$

s = silt content (%), and

M = moisture (%)

The silt content in the overburden was assumed to be 6%, and the moisture content 2%. This results in a emission factor of 9.1 kg/h.

Dozers ripping coal

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 4**.

Equation 4

$$E_{TSP} = 35.6 \times \frac{s^{1.2}}{m^{1.4}}$$
 kg/hour

Where,

The silt content in the coal whilst ripping was assumed to be 10%, and the moisture content 7%, resulting in an emission factor of 37 kg/h.

Loading/unloading coal

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 5**.

Equation 5

$$E_{TSP} = \frac{0.580}{M^{1.2}}$$
 kg/t

where,

$$E_{TSP} = TSP \ emissions$$

$$M = moisture (\%)$$

The moisture content was assumed to be 7%.

Reloading coal from stockpiles to trains

Equation 2 was used and the moisture content was assumed to be 7%.

Wind erosion

The emission factor for wind erosion was assumed to be 0.4kg/ha/h as per SPCC (1983).

Grading roads

Estimations of TSP emissions from grading roads have been made using the **US EPA (1985 and updates)** emission factor equation (**Equation 7**).

Equation 7

$$E_{TSP} = 0.0034 \times S^{2.5}$$
 kg/VKT

where,

S = speed of the grader in km/h (taken to be 8 km/h)

The following tables present the calculated emissions for each year of operations modelled and the allocation of the sources as represented in **Figure 7.** to **Figure 7.**.

The abbreviations used in the tables are as follows:

O/B - overburden

CL - coal

WE - wind erosion emissions

WI - wind insensitive emissions

WS - wind sensitive emissions

Table F.: Year 1 - detailed emission calculations

ACTIVITY	TSP emission/year for 2010-2011 in(kg/y)	TSP emission for July-Oct 2010 (TO MODEL)	TSP emission for Nov 2010 - June 2011 (TO MODEL)	Intensity	units	Emission factor	units	Variable 1	units	Variable 2	units	Variable 3	units
Topsoil Removal - Dozers/Excavators stripping topsoil	2,039	340	1,359	300			kg/h		silt content in %		moisture content in %		
Topsoil removal - Sh/Ex/FELs loading topsoil	804	134	603	960,000		0.00084			average of (wind speed/2.2)^1.3 in	4	moisture content in %		
Topsoil removal - Hauling topsoil to emplacement area	10,378	1,730		960,000		0.010811			t/truck load		km/return trip	1.0	kg/VKT
Topsoil removal - Emplacing topsoil at emplacement area	804	134	603	960,000		0.00084		1.866	average of (wind speed/2.2)^1.3 in	4	moisture content in %		
OB - Drilling	11,943	1,991	8,957		holes/y		kg/hole						
OB - Blasting	21,825	3,638	16,369	150			kg/blast		Area of blast in square metres		holes/blast		
OB - Excavator loading OB to haul truck	73,685	12,281	55,264	40,862,800		0.00180			average of (wind speed/2.2)^1.3 in		moisture content in %		
OB - Hauling to emplacement area (north)	210,288	35,048	157,716	16,345,120		0.01287			t/truck load		km/return trip		kg/VKT
OB - Hauling to emplacement area (south)	458,810	76,468	344,108	24,517,680		0.01871			t/truck load		km/return trip	1.0	kg/VKT
OB- Emplacing at emplacement area (north)	29,474	4,912	22,106	16,345,120		0.00180			average of (wind speed/2.2)^1.3 in		moisture content in %		
OB- Emplacing at emplacement area (south)	44,211	7,369	33,158	24,517,680		0.00180			average of (wind speed/2.2)^1.3 in		moisture content in %		
OB - Dozers on OB	11,967	1,995	8,975	1,320		9.066			silt content in %		moisture content in %		
CL - Dozers ripping/pushing/clean-up	48,852	8,142	36,639	1,320		37.0095			silt content in %	7	moisture content in %		
CL - Sh/Ex/FELs loading open pit coal to trucks	164,392	27,399	123,294	2,928,000		0.05614			moisture content in %				
CL - Hauling open pit coal to ROM pad	63,065	10,511	47,298	2,928,000		0.02154		195	t/load	4.2	km/return trip	1.0	kg/VKT
CL - Unloading ROM to ROM stockpiles	20,496	3,416	15,372	2,049,600		0.01							
CL - Loading ROM directly to hopper to be crushed	49,318	8,220	36,988	878,400	t/y	0.05614	kg/t	7	moisture content in %				
CL - Loading from stockpile to crusher using FELs	115,075	19,179	86,306	2,049,600	t/y	0.05614	kg/t	7	moisture content in %				
CL - Crushing ROM	7,906	1,318	5,929	2,928,000	t/y	0.00270	kg/t						
CL - ROM hopper unloading coal to conveyor 1	29,280	4,880	21,960	2,928,000		0.01	kq/t						
CL- Conveyor to CHPP	993	166	745	0.4050	ha	0.4	kg/ha/h	8760	h/y			0.7	%control
CL - Unloading to transfer point 1	640	107	480	2,928,000	t/v	0.0003	kg/t	1.523	average of (wind speed/2.2)^1.3 in	7	moisture content in %	0.7	%control
CL - Unloading to transfer point 2	640	107	480	2,928,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %	0.7	%control
CL - Unloading to transfer point 3	640	107	480	2,928,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %	0.7	%control
CL - Unloading to transfer point 4	640	107	480	2,928,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %		%control
CL - Unloading to transfer point 5	640	107	480	2,928,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %	0.7	%control
CL - Unloading to CHPP	914	152	685	2,928,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %	-	
CL - Unloading underground coal to CHPP	30,000	5,000	22,500	3,000,000		0.0100							
CL- Handle coal at CHPP (100%)	1,850	308	1,388	5,928,000		0.0003		1 523	average of (wind speed/2.2)^1.3 in	7	moisture content in %		
CL- Rehandle coal at CHPP (+10%)	185	31	139	592,800		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %		
CL - Loading product coal to trains	1,134	189	851	3,633,000		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %		
CL - Loading rejects and tailings to haul trucks	473	79	355	1,514,700		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %		
CL - Hauling rejects and tailings to NEOC voids	21,348	3,558	16,011	1,514,700		0.01409			t/truck load		km/return trip	1.0	kg/VKT
CI - Unloading rejects and tailings to NEOC voids	473	79	355	1,514,700		0.0003			average of (wind speed/2.2)^1.3 in		moisture content in %	1.0	kg/ vici
WE - OB dump area	63,773	10,629	47,830	1,514,700			kg/ha/h	8760		,	moisture content in 70		
WE - OB dump area WE - Open pit	58,517	9,753	43,888	17			kg/ha/h	8760					
WE - ROM stockpiles	10,232	1,705	7,674		ha		kg/ha/h	8760					
WE - Product stockpiles	3,504	584	2,628		ha		kg/ha/h	8760					
WE - Product Stockpiles WE - Dam construction	1,051	584 175	788		ha		kg/na/n kg/ha/h	8760					
Grading roads	43,132	7,189	32,349	70,080			kg/na/n kg/ha/h		speed of graders in km/h				
	31,536	7,189 5,256	23,652		m³/s		mg/m³	8760					
Upcast Vent	31,536	5,256	23,652	200	1117/5	5	my/m²	8/60	I I / Y				

Table F.: Year 1 - source allocation

CEVKW["				Sou	rce ID					
Topsoil Removal - Dozers/Excavators stripping topsoil	17	18	19							
Topsoil removal - Sh/Ex/FELs loading topsoil	17	18	19							
Topsoil removal - Hauling topsoil to emplacement area	10	11	12	13	14	15	16	17		
Topsoil removal - Emplacing topsoil at emplacement area	14									
OB - Drilling	15	16								
OB - Blasting	15	16								
OB - Excavator loading OB to haul truck	15	16								
OB - Hauling to emplacement area (north)	9	10	15	20	21	22	23			
OB - Hauling to emplacement area (south)	10	11	12	13	14	15	20	21	22	23
OB- Emplacing at emplacement area (north)	9									
OB- Emplacing at emplacement area (south)	14									
OB - Dozers on OB	1-14									
CL - Dozers ripping/pushing/clean-up	1-14									
CL - Sh/Ex/FELs loading open pit coal to trucks	15	16	20-34							
CL - Hauling open pit coal to ROM pad	27-38									
CL - Unloading ROM to ROM stockpiles	39	40								
CL - Loading ROM directly to hopper to be crushed	38									
CL - Loading from stockpile to crusher using FELs	39	40								
CL - Crushing ROM	38									
CL - ROM hopper unloading coal to conveyor 1	41									
CL- Conveyor to CHPP	41-52									
CL - Unloading to transfer point 1	44									
CL - Unloading to transfer point 2	47									
CL - Unloading to transfer point 3	48									
CL - Unloading to transfer point 4	49									
CL - Unloading to transfer point 5	52									
CL - Unloading to CHPP	52									
CL - Unloading underground coal to CHPP	63									
CL- Handle coal at CHPP (100%)	53	54	55	56						
CL- Rehandle coal at CHPP (+10%)	53	54	55	56						
CL - Loading product coal to trains	56									
CL - Loading rejects and tailings to haul trucks	63									
CL - Hauling rejects and tailings to NEOC voids	57	58	59	60	61	62	63			
CI - Unloading rejects and tailings to NEOC voids	57									
WE - OB dump area	1-14									
WE - Open pit	15	16	20-32							
WE - ROM stockpiles	39	40								
WE - Product stockpiles	55	63								
WE - Dam construction	64									
Grading roads	9-23	27-38	57-63							
Upcast Vent	57									

Table F.: Year 3 - detailed emission calculations

ACTIVITY	TSP emission/year for 2012-2013	Intensity	units	Emission factor	units	Variable 1	units	Variable 2	units	Variable 3	units
Topsoil Removal - Dozers/Excavators stripping topsoil	in(kg/y) 2,039	300	h/v	6.8	kg/h	10	silt content in %		1 moisture content in %		
Topsoil removal - Sh/Ex/FELs loading topsoil	2,260	2,700,000		0.00084			average of (wind speed/2.2)^1.3 in m/s		1 moisture content in %		
Topsoil removal - Hauling topsoil to emplacement area	35,270	2,700,000		0.013063			t/truck load		km/return trip	1.0	kg/VKT
Topsoil removal - Emplacing topsoil at emplacement area	2,260	2,700,000		0.00084			average of (wind speed/2.2)^1.3 in m/s		1 moisture content in %	1.0	Kg/VKI
OB - Drilling	11,943		holes/y		kg/t kg/hole	1.000	average or (wind speed/2.2)*1.3 in m/s		inoisture content in %		
OB - Blasting	21.825		blasts/y		kg/fiole kg/blast	7501	Area of blast in square metres	125	holes/blast		
OB - Excavator loading OB to haul truck	72,761	40,350,200		0.00180			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
OB - Hauling to emplacement area (east)	608,792	24,210,120		0.02515			t/truck load		km/return trip	1.0	kg/VKT
OB - Hauling to emplacement area (east) OB - Hauling to emplacement area (west)	471,932	16,140,080	L/ y	0.02924			t/truck load		km/return trip		kg/VKT
OB- Emplacing at emplacement area (east)	43,656	24,210,120	+/\/	0.00180			average of (wind speed/2.2)^1.3 in m/s		moisture content in %	1.0	Kg/ VICT
OB- Emplacing at emplacement area (east) OB- Emplacing at emplacement area (west)	29,104	16,140,080		0.00180			average of (wind speed/2.2) 1.3 in m/s		moisture content in %		
OB - Dozers on OB	11,967	1,320		9.066			silt content in %		moisture content in %		
CL - Dozers ripping/pushing/clean-up	48,852	1,320		37.0095			silt content in %		moisture content in %		
CL - Sh/Ex/FELs loading open pit coal to trucks	173,881	3,097,000		0.05614			moisture content in %		moisture content in %		
CL - Hauling open pit coal to ROM pad	55,587	3,097,000		0.01795			t/load	3 1	km/return trip	1.0	kg/VKT
CL - Unloading ROM to ROM stockpiles	21,679	2,167,900			kg/t	193	tyload	J.,	kinyretarii trip	1.0	Kg/ VICT
CL - Loading ROM directly to hopper to be crushed	52,164	929,100		0.05614		7	moisture content in %				
CL - Loading from stockpile to crusher using FELs	121,717	2,167,900		0.05614			moisture content in %				
CL - Crushing ROM	8,362	3,097,000		0.00270		, ·	moisture content in 70				
CL - ROM hopper unloading coal to conveyor 1	30,970	3,097,000			kg/t						
CL- Conveyor to CHPP	993	0.4050			kg/ha/h	8760	h/v			0.7	%contr
CL - Unloading to transfer point 1	677	3,097,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		7 moisture content in %		%contr
CL - Unloading to transfer point 2	677	3,097,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		%contr
CL - Unloading to transfer point 3	677	3,097,000		0.0003	ka/t		average of (wind speed/2.2)^1.3 in m/s		7 moisture content in %	0.7	%contr
CL - Unloading to transfer point 4	677	3,097,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		%contr
CL - Unloading to transfer point 5	677	3,097,000		0.0003			average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to CHPP	967	3,097,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
CL - Unloading underground coal to CHPP	50,000	5,000,000	t/y	0.0100	kg/t						
CL- Handle coal at CHPP (100%)	2,527	8,097,000		0.0003		1.523	average of (wind speed/2.2)^1.3 in m/s	-	moisture content in %		
CL- Rehandle coal at CHPP (+10%)	253	809,700	t/y	0.0003	kg/t	1.523	average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
CL - Loading product coal to trains	1,492	4,780,000		0.0003	kg/t		average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
WE - OB dump area	139,810		ha		kg/ha/h						
WE - Open pit	51,859		ha		kg/ha/h	8760					
WE - ROM stockpiles	10,232		ha		kg/ha/h	8760					
WE - Product stockpiles	3,504		ha		kg/ha/h	8760					
Grading roads	43,132	70,080			kg/ha/h		speed of graders in km/h				
Upcast Vent	31,536	200	m³/s	5	mg/m³	8760	h/y				

Table F.: Year 3 - source allocation

ACTIVITY							Sou	ırce II								
Topsoil Removal - Dozers/Excavators stripping topsoil	1	2	3	4	12											
Topsoil removal - Sh/Ex/FELs loading topsoil	1	2	3	4	12											
Topsoil removal - Hauling topsoil to emplacement area	12	13	14	15	16	22	23	24	25							
Topsoil removal - Emplacing topsoil at emplacement area	25															
OB - Drilling	5	6	7	8	9	10	11	26	27	28						
OB - Blasting	5	6	7	8	9	10	11	26	27	28						
OB - Excavator loading OB to haul truck	5	6	7	8	9	10	11	26	27	28						
OB - Hauling to emplacement area (east)	9	10	11	12	13	14	15	16	22	23	24	25				
OB - Hauling to emplacement area (west)	9	10	11	12	13	14	15	16	17	18	19	20	21			
OB- Emplacing at emplacement area (east)	25															
OB- Emplacing at emplacement area (west)	21															
OB - Dozers on OB	14	15	16	17	18	19	20	21	22	23	24	25	29	30	31	33 - 41
CL - Dozers ripping/pushing/clean-up	14	15	16	17	18	19	20	21	22	23	24	25	29	30	31	33 - 41
CL - Sh/Ex/FELs loading open pit coal to trucks	5	6	7	8	9	10	26	27	28							
CL - Hauling open pit coal to ROM pad	26	27	28	29	30	31	32	38								
CL - Unloading ROM to ROM stockpiles	42	43														
CL - Loading ROM directly to hopper to be crushed	32															
CL - Loading from stockpile to crusher using FELs	42	43														
CL - Crushing ROM	32															
CL - ROM hopper unloading coal to conveyor 1	44															
CL- Conveyor to CHPP	44	45	46	47	48	49	50	51	52	53	54	55				
CL - Unloading to transfer point 1	47															
CL - Unloading to transfer point 2	50															
CL - Unloading to transfer point 3	51															
CL - Unloading to transfer point 4	54															
CL - Unloading to transfer point 5	55															
CL - Unloading to CHPP	55															
CL - Unloading underground coal to CHPP	59															
CL- Handle coal at CHPP (100%)	56	57	58	59	60											
CL- Rehandle coal at CHPP (+10%)	56	57	58	59	60											
CL - Loading product coal to trains	59															
WE - OB dump area	14	15	16	17	18	19	20	21	22	23	24	25	29	30	31	33 - 41
WE - Open pit	5	6	7	8	9	10	11	26	27	28						
WE - ROM stockpiles	42	43														
WE - Product stockpiles	58	60														
Grading roads	9	10	11	12	13	14	15	16	17	18	19	20 -32	38			
Upcast Vent	61															

Table F.: Year 5 – detailed emission calculations

ACTIVITY	TSP emission/year for 2014-2015 in(kg/y)	Intensity	units	Emission factor	units	Variable units	Variable 2	units	Variable 3	units
Topsoil Removal - Dozers/Excavators stripping topsoil	2,039	300	h/v	6.8	kg/h	10 silt content in %	4	moisture content in %		
Topsoil removal - Sh/Ex/FELs loading topsoil	2,612	3,120,000		0.00084		1.866 average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
Topsoil removal - Hauling topsoil to emplacement area	49,189	3,120,000		0.015766		222 t/truck load		km/return trip	1.0	kg/VKT
Topsoil removal - Emplacing topsoil at emplacement area	2,612	3,120,000		0.00084		1.866 average of (wind speed/2.2)^1.3 in m/s		moisture content in %	1.0	Kg/ VKT
OB - Drilling	11,943		holes/y		kg/hole	1.000 average of (will speed/2.2) 1.3 in m/s	7	moisture content in 70		
OB - Blasting	21,825		blasts/y		kg/blast	7591 Area of blast in square metres	135	holes/blast		
OB - Excavator loading OB to haul truck	72,761	40,350,200		0.00180		1.523 average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
OB - Hauling from pit (north) to emplacement area	561,693	20,175,100		0.02784		176 t/truck load		km/return trip	1.0	kg/VKT
OB - Hauling from pit (south) to emplacement area	584,619	20,175,100	47	0.02898		176 t/truck load		km/return trip		kg/VKT
OB- Emplacing at emplacement area	72,761	40,350,200	t/v	0.00180		1.523 average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
OB - Dozers on OB	11,967	1,320		9.066		6 silt content in %		moisture content in %		
CL - Dozers ripping/pushing/clean-up	48,852	1,320		37.0095		10 silt content in %		moisture content in %		
CL - Sh/Ex/FELs loading open pit coal to trucks	192,072	3,421,000		0.05614		7 moisture content in %	1	moiscare concent in 70		
CL - Hauling open pit coal to ROM pad	78,946	3,421,000		0.02308		195 t/load	4.5	km/return trip	1.0	kg/VKT
CL - Unloading ROM to ROM stockpiles	23,947	2,394,700		0.01						J,
CL - Loading ROM directly to hopper to be crushed	57,622	1,026,300		0.05614		7 moisture content in %				
CL - Loading from stockpile to crusher using FELs	134,450	2,394,700	t/y	0.05614	kg/t	7 moisture content in %				
CL - Crushing ROM	9,237	3,421,000	t/y	0.00270	kg/t					
CL - ROM hopper unloading coal to conveyor 1	34,210	3,421,000	t/y	0.01	kg/t					
CL- Conveyor to CHPP	993	0	ha	0.4	kg/ha/h	8760 h/y			0.7	%contr
CL - Unloading to transfer point 1	747	3,421,000	t/y	0.0003	kg/t	1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to transfer point 2	747	3,421,000		0.0003		1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to transfer point 3	747	3,421,000		0.0003	kg/t	1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to transfer point 4	747	3,421,000		0.0003		1.523 average of (wind speed/2.2)^1.3 in m/s		moisture content in %		%contr
CL - Unloading to transfer point 5	747	3,421,000	t/y	0.0003	kg/t	1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to CHPP	1,068	3,421,000	t/y	0.0003	kg/t	1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
CL - Unloading underground coal to CHPP	50,000	5,000,000	t/y	0.0100	kg/t					
CL- Handle coal at CHPP (100%)	2,629	8,421,000	t/y	0.0003	kg/t	1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
CL- Rehandle coal at CHPP (+10%)	263	842,100		0.0003		1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
CL - Loading product coal to trains	1,513	4,848,000		0.0003		1.523 average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
WE - OB dump area	128,947	37			kg/ha/h	8760 h/y				
WE - Open pit	99,864	29			kg/ha/h	8760 h/y				
WE - ROM stockpiles	10,232		ha		kg/ha/h	8760 h/y				
WE - Product stockpiles	3,504		ha		kg/ha/h	8760 h/y				
Grading roads	43,132	70080		0.61547		8 speed of graders in km/h				
Upcast Vent	31,536	200	m³/s	5	mg/m³	8760 h/y				

Table F.: Year 5 - source allocation

Topsoil Removal - Dozers/Excavators stripping topsoil 1 2 3 4 5 6 17	ACTIVITY	•	ubic i	1 ea		Joure	c uno	catioi	•	Sau	co ID								
Topsoil removal - Sh/Ex/FELs loading topsoil 1 2 3 4 5 6 17		-1	2	2	4		6	17		Soul	ce ID								
Topsoil removal - Hauling topsoil to emplacement area 16 17 22 23 24 25 26 27 28 29																			-
Topsoil removal - Emplacing topsoil at emplacement area 29 8 9 10 11 12 13 14 15 16 18 19 20 21 30 31 32									27	20	20								<u> </u>
OB - Drilling			1/	22	23	24	25	26	21	28	29								 '
OB - Blasting			_	0	10	- 1 - 1	10	10	1.4	- 1 -	1.0	10	10	20	2.1	20	24	22	22
OB - Excavator loading OB to haul truck																			33
OB - Hauling from pit (north) to emplacement area 18 19 20 21 22 23 24 25 26 27 28 29																			33
OB - Hauling from pit (south) to emplacement area OB - Emplacing at emplacement area 29 OB - Dozers on OB CL - Dozers ripping/pushing/clean-up 23														20	21	30	31	32	33
OB- Emplacing at emplacement area 29																			
OB - Dozers on OB	3 1 1 7 1		14	15	16	17	22	23	24	25	26	27	28	29					
CL - Dozers ripping/pushing/clean-up CL - Sh/Ex/FELs loading open pit coal to trucks 7 8 9 10 11 12 13 14 15 16 18 19 20 21 30 31 32 CL - Hauling open pit coal to ROM pad 30 31 32 33 34 35 36 37 38 39 CL - Unloading ROM to ROM stockpiles 48 49 CL - Loading ROM directly to hopper to be crushed 39 CL - Loading ROM directly to hopper to be crushed 39 CL - Loading from stockpile to crusher using FELs 48 49 CL - Conveyor to CHPP 50 51 52 53 54 55 56 57 58 59 60 61 CL - Unloading to transfer point 1 CL - Unloading to transfer point 2 CL - Unloading to transfer point 3 CL - Unloading to transfer point 4 CL - Unloading to transfer point 5 CL - Unloading to transfer point 5 CL - Unloading to transfer point 5 CL - Unloading to CHPP 61 CL - Unloading underground coal to CHPP 62 63 64 65 66 CL - Loading product coal to trains 66 CL - Loading product coal to trains																			
CL - Sh/Ex/FELs loading open pit coal to trucks 7 8 9 10 11 12 13 14 15 16 18 19 20 21 30 31 32 CL - Hauling open pit coal to ROM pad 30 31 32 33 34 35 36 37 38 39 CL - Loading ROM to ROM stockpiles 48 49 CL - Loading ROM directly to hopper to be crushed 39 CL - Loading from stockpile to crusher using FELs 48 49 CL - Crushing ROM CL - ROM hopper unloading coal to conveyor 1 50 CL - Crushing ROM CL - ROM hopper unloading coal to conveyor 1 50 CL - Unloading to transfer point 1 53 CL - Unloading to transfer point 1 53 CL - Unloading to transfer point 2 56 CL - Unloading to transfer point 3 57 CL - Unloading to transfer point 4 60 CL - Unloading to transfer point 5 61 CL - Unloading to transfer point 5 61 CL - Unloading underground coal to CHPP 66 CL - Unloading underground coal to CHPP 61 CL - Unloading underground coal to CHPP 62 CL - Loading product coal at CHPP (100%) 61 62 63 64 65 66 CL - Loading product coal to trains 66 CL - Loading pr																			47
CL - Hauling open pit coal to ROM pad 30 31 32 33 34 35 36 37 38 39																			47
CL - Unloading ROM to ROM stockpiles 48 49 0	CL - Sh/Ex/FELs loading open pit coal to trucks	7										18	19	20	21	30	31	32	33
CL - Loading ROM directly to hopper to be crushed 39				32	33	34	35	36	37	38	39								
CL - Loading from stockpile to crusher using FELs 48 49	CL - Unloading ROM to ROM stockpiles	48	49																
CL - Crushing ROM 39	CL - Loading ROM directly to hopper to be crushed	39																	
CL - ROM hopper unloading coal to conveyor 1 50 Image: square sq	CL - Loading from stockpile to crusher using FELs	48	49																
CL- Conveyor to CHPP 50 51 52 53 54 55 56 57 58 59 60 61 61 CL - Unloading to transfer point 1 53 53 55 56 57 58 59 60 61 60 CL - Unloading to transfer point 3 57 <td>CL - Crushing ROM</td> <td>39</td> <td></td>	CL - Crushing ROM	39																	
CL - Unloading to transfer point 1 53	CL - ROM hopper unloading coal to conveyor 1	50																	
CL - Unloading to transfer point 2 56	CL- Conveyor to CHPP	50	51	52	53	54	55	56	57	58	59	60	61						
CL - Unloading to transfer point 3 57 </td <td>CL - Unloading to transfer point 1</td> <td>53</td> <td></td>	CL - Unloading to transfer point 1	53																	
CL - Unloading to transfer point 4 60	CL - Unloading to transfer point 2	56																	
CL - Unloading to transfer point 4 60	CL - Unloading to transfer point 3	57																	
CL - Unloading to CHPP 61 <td></td> <td>60</td> <td></td>		60																	
CL - Unloading to CHPP 61 <td>CL - Unloading to transfer point 5</td> <td>61</td> <td></td>	CL - Unloading to transfer point 5	61																	
CL- Handle coal at CHPP (100%) 61 62 63 64 65 66 66 66 CL- Rehandle coal at CHPP (+10%) 61 62 63 64 65 66		61																	
CL- Handle coal at CHPP (100%) 61 62 63 64 65 66 66 66 CL- Rehandle coal at CHPP (+10%) 61 62 63 64 65 66	CL - Unloading underground coal to CHPP	66																	
CL- Rehandle coal at CHPP (+10%) 61 62 63 64 65 66 CL - Loading product coal to trains 66 8 8 8 8 8 9 8 9 </td <td></td> <td></td> <td>62</td> <td>63</td> <td>64</td> <td>65</td> <td>66</td> <td></td>			62	63	64	65	66												
CL - Loading product coal to trains 66																			
WE - OB dump area	WE - OB dump area	23	24	25	26	27	28	29											
WE - Open pit								_	14	15	16	18	19	20	21	30	31	32	33
WE - ROM stockpiles 48 49								- 10								30	91		- 33
WE - Product stockpiles 64 65																			
				15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30-39
Upcast Vent 67 67			17	1.5	10	1/	10	1)	20	۲1	۷۷	دے	47	23	20	۷.	20	23	30 37

Table F.: Year 7 – detailed emission calculations

ACTIVITY	TSP emission/year for 2016-2017 in(kg/y)	Intensity	units	Emission factor	units	Variable 1	units	Variable 2	units	Variable 3	units
Topsoil Removal - Dozers/Excavators stripping topsoil	-		h/y		kg/h		silt content in %		moisture content in %		
Topsoil removal - Sh/Ex/FELs loading topsoil	-	-	t/y	0.00084			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
Topsoil removal - Hauling topsoil to emplacement area	-	-	t/y	0.000000	kg/t	222	t/truck load		km/return trip	1.0	kg/VKT
Topsoil removal - Emplacing topsoil at emplacement area	-	-	t/y	0.00084		1.866	average of (wind speed/2.2)^1.3 in m/s	4	moisture content in %		
OB - Drilling	11,943		holes/y		kg/hole						
OB - Blasting	21,825		blasts/y		kg/blast		Area of blast in square metres		holes/blast		
OB - Excavator loading OB to haul truck	37,092	20,570,000		0.00180			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
OB - Hauling from pit to emplacement area	342,042	20,570,000		0.01663			t/truck load		km/return trip	1.0	kg/VKT
OB- Emplacing at emplacement area	37,092	20,570,000		0.00180			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
OB - Dozers on OB	11,967	1,320		9.066			silt content in %		moisture content in %		
CL - Dozers ripping/pushing/clean-up	48,852	1,320		37.0095			silt content in %	7	moisture content in %		
CL - Sh/Ex/FELs loading open pit coal to trucks	63,051	1,123,000		0.05614			moisture content in %				
CL - Hauling open pit coal to ROM pad	28,795	1,123,000		0.02564		195	t/load	5	km/return trip	1.0	kg/VKT
CL - Unloading ROM to ROM stockpiles	7,861	786,100		0.01							
CL - Loading ROM directly to hopper to be crushed	18,915	336,900		0.05614			moisture content in %				
CL - Loading from stockpile to crusher using FELs	44,136	786,100		0.05614		7	moisture content in %				
CL - Crushing ROM	3,032	1,123,000		0.00270							
CL - ROM hopper unloading coal to conveyor 1	11,230	1,123,000		0.01	kg/t						
CL- Conveyor to CHPP	993	0.4050			kg/ha/h	8760					%contr
CL - Unloading to transfer point 1	245	1,123,000		0.0003		1.523	average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		%contr
CL - Unloading to transfer point 2	245	1,123,000	t/y	0.0003	kg/t	1.523	average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %	0.7	%contr
CL - Unloading to transfer point 3	245	1,123,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		%contr
CL - Unloading to transfer point 4	245	1,123,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		%contr
CL - Unloading to transfer point 5	245	1,123,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %	0.7	%contr
CL - Unloading to CHPP	351	1,123,000		0.0003		1.523	average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
CL - Unloading underground coal to CHPP	50,000	5,000,000		0.0100							
CL- Handle coal at CHPP (100%)	1,911	6,123,000		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
CL- Rehandle coal at CHPP (+10%)	191	612,300		0.0003			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		
CL - Loading product coal to trains	1,161	3,719,843		0.0003			average of (wind speed/2.2)^1.3 in m/s	7	moisture content in %		
WE - OB dump area	114,230	33			kg/ha/h	8760					
WE - Open pit	97,762	28			kg/ha/h	8760					
WE - ROM stockpiles	10,232		ha		kg/ha/h	8760					
WE - Product stockpiles	3,504		ha		kg/ha/h	8760					
Grading roads	43,132	70,080		0.61547			speed of graders in km/h				
Upcast Vent	31,536	200	m³/s	5	mg/m³	8760	h/y				

Table F.: Year 7 - source allocation

		. abic i		1 / - 30	Ju. 22 2		···									
CEVKKV["								Sourc								
OB - Drilling	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OB - Blasting	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OB - Excavator loading OB to haul truck	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OB - Hauling from pit to emplacement area	11	12	13	14	15	16	17	18	19	20						
OB- Emplacing at emplacement area	20															
OB - Dozers on OB	17	18	19	20	21	22										
CL - Dozers ripping/pushing/clean-up	17	18	19	20	21	22	23									
CL - Sh/Ex/FELs loading open pit coal to trucks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CL - Hauling open pit coal to ROM pad	11	12	13	14	15	16	17	21	22	23	24	25	26			
CL - Unloading ROM to ROM stockpiles	35	36														
CL - Loading ROM directly to hopper to be crushed	26															
CL - Loading from stockpile to crusher using FELs	35	36														
CL - Crushing ROM	26															
CL - ROM hopper unloading coal to conveyor 1	37															
CL- Conveyor to CHPP	37	38	39	40	41	42	43	44	45	46	47	48				
CL - Unloading to transfer point 1	40															
CL - Unloading to transfer point 2	43															
CL - Unloading to transfer point 3	44															
CL - Unloading to transfer point 4	47															
CL - Unloading to transfer point 5	48															
CL - Unloading to CHPP	48															
CL - Unloading underground coal to CHPP	53															
CL- Handle coal at CHPP (100%)	48	49	50	51	52	53										
CL- Rehandle coal at CHPP (+10%)	48	49	50	51	52	53										
CL - Loading product coal to trains	53															
WE - OB dump area	17	18	19	20	21	22	27	28	29	30	31	32	33	34		
WE - Open pit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
WE - ROM stockpiles	35	36														
WE - Product stockpiles	51	52														
Grading roads	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Upcast Vent	54															